首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystal structures of cytochrome c peroxidase and ascorbate peroxidase are very similar, including the active site architecture. Both peroxidases have a tryptophan residue, designated the proximal Trp, located directly adjacent to the proximal histidine heme ligand. During the catalytic cycle, the proximal Trp in cytochrome c peroxidase is oxidized to a cation radical. However, in ascorbate peroxidase, the porphyrin is oxidized, not the proximal Trp, despite the close similarity between the two peroxidase active site structures. A cation located approximately 8 A from the proximal Trp in ascorbate peroxidase but absent in cytochrome c peroxidase is thought to be one reason why ascorbate peroxidase does not form a Trp radical. Site-directed mutagenesis has been used to introduce the ascorbate peroxidase cation binding site into cytochrome c peroxidase. Crystal structures show that mutants now bind a cation. Electron paramagnetic resonance spectroscopy shows that the cation-containing mutants of cytochrome c peroxidase no longer form a stable Trp radical. The activity of the cation mutants using ferrocytochrome c as a substrate is < 1% of wild type levels, while the activity toward a small molecule substrate, guaiacol, increases. These results demonstrate that long range electrostatic effects can control the reactivity of a redox active amino acid side chain and that oxidation/reduction of the proximal Trp is important in the oxidation of ferrocytochrome c.  相似文献   

2.
Recombinant pea cytosolic ascorbate peroxidase (APX) has been characterized by resonance Raman (RR) and electronic absorption spectroscopies. The ferric and ferrous forms together with the complexes with fluoride and imidazole have been studied and compared with the corresponding spectra of cytochrome c peroxidase (CCP). Ferric APX at neutral pH is a mixture of 6- and 5-coordinate high-spin and 6-c low-spin hemes, the latter two species being dominant. The results suggest that the low-spin form derives from a water/hydroxo ligand bound to the heme iron and not from a strong internal ligand as observed in CCP at alkaline pH. Two Fe-Im stretching modes are identified, as in CCP, but the RR frequencies confirm a weaker His163-Asp208 hydrogen bond than in CCP, as suggested on the basis of the X-ray structure [Patterson, W. R., and Poulos, T. L. (1995) Biochemistry 34, 4331-4341]. The data show that CCP and APX have markedly different orientations of the vinyl substituents on the heme chromophore resulting from different steric constraints exerted by the protein matrix.  相似文献   

3.
Two mutants of cytochrome c peroxidase (CCP) are reported which exhibit unique specificities toward oxidation of small substrates. Ala-147 in CCP is located near the delta-meso edge of the heme and along the solvent access channel through which H2O2 is thought to approach the active site. This residue was replaced with Met and Tyr to investigate the hypothesis that small molecule substrates are oxidized at the exposed delta-meso edge of the heme. X-ray crystallographic analyses confirm that the side chains of A147M and A147Y are positioned over the delta-meso heme position and might therefore modify small molecule access to the oxidized heme cofactor. Steady-state kinetic measurements show that cytochrome c oxidation is enhanced 3-fold for A147Y relative to wild type, while small molecule oxidation is altered to varying degrees depending on the substrate and mutant. For example, oxidation of phenols by A147Y is reduced to less than 20% relative to the wild-type enzyme, while Vmax/e for oxidation of other small molecules is less affected by either mutation. However, the "specificity" of aniline oxidation by A147M, i.e., (Vmax/e)/Km, is 43-fold higher than in wild-type enzyme, suggesting that a specific interaction for aniline has been introduced by the mutation. Stopped-flow kinetic data show that the restricted heme access in A147Y or A147M slows the reaction between the enzyme and H202, but not to an extent that it becomes rate limiting for the oxidation of the substrates examined. The rate constant for compound ES formation with A147Y is 2.5 times slower than wild-type CCP. These observations strongly support the suggestion that small molecule oxidations occur at sites on the enzyme distinct from those utilized by cytochrome c and that the specificity of small molecule oxidation can be significantly modulated by manipulating access to the heme edge. The results help to define the role of alternative electron transfer pathways in cytochrome c peroxidase and may have useful applications in improving the specificity of peroxidase with engineered function.  相似文献   

4.
The oxidative damage of proteins and lipid peroxidation of membrane lipoproteins has already been described as a possible pathogenic mechanism for liver injury. The aim of the present study was to examine the mechanism that could be responsible for the oxidative modification of rat liver 5'-nucleotidase during exposure to different free radical generating systems: FeCl2/ascorbate, xanthine/xanthine oxidase and H2O2. The level of lipid peroxidation products malondialdehyde (MDA), as well as the level of protein carbonyl groups formation was measured in cells and extracellular medium. The activity of 5'-nucleotidase was linearly decreased in both hepatocytes and extracellular medium after exposure to the FeCl2/ascorbate system indicating that the possible mechanism for oxidative modification could be a metal-binding site of the enzyme. In xanthine/xanthine oxidase system the enzyme activity of hepatocytes had decreased in hepatocytes but increased in the extracellular medium indicating that proteolysis of membrane proteins could he responsible for enzyme release in the extracellular medium. When hepatocytes were exposed to a H2O2 free-radical generating system, the activity of 5'-nucleotidase tended to be decreased in cells and decreased in extracellular medium too, indicating that H2O2 could be less reactive in producing an oxidative modification of the enzyme. In order to support the hypothesis that the cation-binding site can be responsible for oxidative modification of the enzyme, the isolated hepatocytes were preincubated with a Ca(2+)-channel blocker (Verapamil) and then exposed to different radical-generating systems. Verapamil had only a slight effect in potentiating the inhibition in the FeCl2/ascorbate system. This probably means that the cellular cation flux and cation binding may be included as a vulnerable site with the greatest importance in the oxidative modification of 5'-nucleotidase.  相似文献   

5.
The three-dimensional structure of recombinant horseradish peroxidase in complex with BHA (benzhydroxamic acid) is the first structure of a peroxidase-substrate complex demonstrating the existence of an aromatic binding pocket. The crystal structure of the peroxidase-substrate complex has been determined to 2.0 A resolution with a crystallographic R-factor of 0.176 (R-free = 0. 192). A well-defined electron density for BHA is observed in the peroxidase active site, with a hydrophobic pocket surrounding the aromatic ring of the substrate. The hydrophobic pocket is provided by residues H42, F68, G69, A140, P141, and F179 and heme C18, C18-methyl, and C20, with the shortest distance (3.7 A) found between heme C18-methyl and BHA C63. Very little structural rearrangement is seen in the heme crevice in response to substrate binding. F68 moves to form a lid on the hydrophobic pocket, and the distal water molecule moves 0.6 A toward the heme iron. The bound BHA molecule forms an extensive hydrogen bonding network with H42, R38, P139, and the distal water molecule 2.6 A above the heme iron. This remarkably good match in hydrogen bond requirements between the catalytic residues of HRPC and BHA makes the extended interaction between BHA and the distal heme crevice of HRPC possible. Indeed, the ability of BHA to bind to peroxidases, which lack a peripheral hydrophobic pocket, suggests that BHA is a general counterpart for the conserved hydrogen bond donors and acceptors of the distal catalytic site. The closest aromatic residue to BHA is F179, which we predict provides an important hydrophobic interaction with more typical peroxidase substrates.  相似文献   

6.
Ascorbate peroxidase (APX) is a hydrogen peroxide-scavenging peroxidase which uses ascorbate (AsA) as the specific electron donor. APX has not been isolated in mammals. Ocular tissue contains AsA at high concentrations, and we detected APX activity in bovine retinal pigment epithelium (RPE) and choroid. We purified APX from bovine RPE and choroid by four chromatographic steps. The purified APX was a monomeric hemoprotein with a molecular mass of 43 kDa. The amino acid sequence of the amino-terminal region of the purified APX showed a high degree of homology to that of plants. The primary product of the APX reaction was identified as the monodehydroascorbate radical. The APX showed high specificity for AsA as an electron donor. This is the first isolation and characterization of APX from mammals, and its role in the protection against active species of oxygen in ocular tissue is discussed.  相似文献   

7.
The crystal structure of horseradish peroxidase isozyme C (HRPC) has been solved to 2.15 A resolution. An important feature unique to the class III peroxidases is a long insertion, 34 residues in HRPC, between helices F and G. This region, which defines part of the substrate access channel, is not present in the core conserved fold typical of peroxidases from classes I and II. Comparison of HRPC and peanut peroxidase (PNP), the only other class III (higher plant) peroxidase for which an X-ray structure has been completed, reveals that the structure in this region is highly variable even within class III. For peroxidases of the HRPC type, characterized by a larger FG insertion (seven residues relative to PNP) and a shorter F' helix, we have identified the key residue involved in direct interactions with aromatic donor molecules. HRPC is unique in having a ring of three peripheral Phe residues, 142, 68 and 179. These guard the entrance to the exposed haem edge. We predict that this aromatic region is important for the ability of HRPC to bind aromatic substrates.  相似文献   

8.
The interaction of recombinant ascorbate peroxidase (APX) with its physiological substrate, ascorbate, has been studied by electronic and NMR spectroscopies, and by phenylhydrazine-modification experiments. The binding interaction for the cyanide-bound derivative (APX-CN) is consistent with a 1:1 stoichiometry and is characterised by an equilibrium dissociation binding constant. Kd, of 11.6 +/- 0.4 microM (pH 7.002, mu = 0.10 M, 25.0 degrees C). Individual distances between the non-exchangeable substrate protons of APX-CN and the haem iron were determined by paramagnetic-relaxation NMR measurements, and the data indicate that the ascorbate binds 0.90-1.12 nm from the haem iron. The reaction of ferric APX with the suicide substrate phenylhydrazine yields predominantly (60%) a covalent haem adduct which is modified at the C20 carbon, indicating that substrate binding and oxidation is close to the exposed C20 position of the haem, as observed for other classical peroxidases. Molecular-modelling studies, using the NNM-derived distance restraints in conjunction with the crystal structure of the enzyme [Patterson, W. R. & Poulos, T. L. (1995) Biochemistry 34, 4331-4341], are consistent with binding of the substrate close to the C20 position and a possible functional role for alanine 134 (proline in other class-III peroxidases) is implicated.  相似文献   

9.
The crystal structure of Arthromyces ramosus peroxidase (ARP) in complex with benzhydroxamic acid (BHA) as determined by X-ray analysis at 1.6 A shows unambiguously how BHA binds to ARP. BHA is located in the distal heme pocket. Its functional groups are held by three hydrogen bonds to His56N(epsilon), Arg52N(epsilon), and Pro(154)O, but are too far away to interact with the heme iron. The aromatic ring of BHA is positioned at the entrance of the channel to the heme pocket, approximately parallel to the heme group. Most water molecules at the active site of the native enzyme are replaced by BHA, leaving a ligand, probably a water molecule, at the sixth position of the heme. Results are compared with spectroscopic data.  相似文献   

10.
Chemical modification studies and site-directed mutagenesis experiments have provided evidence that human lysosomal acid lipase/cholesteryl ester hydrolase (HLAL), human gastric lipase (HGL), and rat lingual lipase (RLL) are serine esterases. Loss of HLAL and HGL activity was also observed in the presence of sulfhydryl-reactive substances, suggesting that cysteines are likewise essential for substrate hydrolysis. To study the functional role of the HLAL and HGL cysteine residues, we replaced these amino acids with alanine by site-directed mutagenesis. Substitutions at positions 227 and 236, alone or together, drastically reduced hydrolytic activity in a substrate-dependent manner while the other mutants were not affected to any great extent. HLAL(Cys227-->Ala), HLAL(Cys236-->Ala), and HLAL(Cys227-->Ala, Cys236-->Ala) were essentially inactive against cholesteryl oleate, but retained about 23-39%, 28-37%, and 13-17% of catalytic activity for both triolein and tributyrin, respectively. The data obtained with the corresponding HGL mutants confirmed the importance of residues 227 and 236 in maintaining enzymatic activity towards long- and short-chain triglycerides. In order to assess the contribution of the eight amino acids delimited by Cys227 and Cys236 to lipolysis, we generated HLAL replacement mutants containing the corresponding residues 228-235 of HGL or RLL. Both HLAL chimeras were catalytically active towards all three substrates analyzed, indicating that these amino acids do not determine HLAL substrate specificity. Deletion of the eight-amino acid alpha-helix as well as disruption of its hydrophobic surface, in contrast, abolished enzymatic activity. Our studies suggest that Cys227, Cys236, and the amphipathic helix formed by residues 228-235 are essential for HLAL- and HGL-mediated neutral lipid catabolism.  相似文献   

11.
Salt damage to plants has been attributed to a combination of several factors including mainly osmotic stress and the accumulation of toxic ions. Recent findings in our laboratory showed that phospholipid hydroperoxide glutathione peroxidase (PHGPX), an enzyme active in the cellular antioxidant system, was induced by salt in citrus cells and mainly in roots of plants. Following this observation we studied the two most important enzymes active in elimination of reactive oxygen species, namely, superoxide dismutase (SOD) and ascorbate peroxidase (APX), to determine whether a general oxidative stress is induced by salt. While Cu/Zn-SOD activity and cytosolic APX protein level were similarly induced by salt and methyl viologen, the response of PHGPX and other APX isozymes was either specific to salt or methyl viologen, respectively. Unlike PHGPX, cytosolic APX and Cu/Zn-SOD were not induced by exogenously added abscisic acid. Salt induced a significant increase in SOD activity which was not matched by the subsequent enzyme APX. We suggest that the excess of H2O2 interacts with lipids to form hydroperoxides which in turn induce and are removed by PHGPX. Ascorbate peroxidase seems to be a key enzyme in determining salt tolerance in citrus as its constitutive activity in salt-sensitive callus is far below the activity observed in salt-tolerant callus, while the activities of other enzymes involved in the defence against oxidative stress, namely SOD, glutathione reductase and PHGPX, are essentially similar.  相似文献   

12.
This communication describes the interactions of salicylic acid (SA) with plant ascorbate peroxidase (APX). Contrary to a recent report (Durner, J., and Klessig, D. F. (1995) Proc. Natl. Acad. Sci. U. S. A. 92, 11312-11316) we show conclusively that ascorbate oxidation by APX is not inhibited by SA (10 mM), but that SA is a slow reducing substrate of this enzyme. The suggestion that SA-dependent inhibition of APX in planta may result in the elevation of H2O2 levels, which in turn acts as a second messenger in systemic acquired resistance signaling, is therefore not tenable. We conclude that APX remains a key antioxidant during systemic acquired resistance following pathogenic infection of plants. The transient products of SA oxidation by APX appear to be SA free radicals that undergo subsequent chemistry. APX-dependent oxidation of SA could be essential for diminishing the detrimental effects of this phenolic acid on plant cells.  相似文献   

13.
Peptidylglycine alpha-hydroxylating monooxygenase (PHM) is a copper, ascorbate, and molecular oxygen dependent enzyme that catalyzes the first step leading to the C-terminal amidation of glycine-extended peptides. The catalytic core of PHM (PHMcc), refined to residues 42-356 of the PHM protein, was expressed at high levels in CHO (DG44) (dhfr-) cells. PHMcc has 10 cysteine residues involved in 5 disulfide linkages. Endoprotease Lys-C digestion of purified PHMcc under nonreducing conditions cleaved the protein at Lys219, indicating that the protein consists of separable N- and C-terminal domains with internal disulfide linkages, that are connected by an exposed linker region. Disulfide-linked peptides generated by sequential CNBr and pepsin treatment of radiolabeled PHMcc were separated by reverse phase HPLC and identified by Edman degradation. Three disulfide linkages occur in the N-terminal domain (Cys47-Cys186, Cys81-Cys126, and Cys114-Cys131), along with three of the His residues critical to catalytic activity (His107, His108, and His172). Two disulfide linkages (Cys227-Cys334 and Cys293-Cys315) occur in the C-terminal domain, along with the remaining two essential His residues (His242, His244) and Met314, thought to be essential in binding one of the two nonequivalent copper atoms. Substitution of Tyr79 or Tyr318 with Phe increased the Km of PHM for its peptidylglycine substrate without affecting the Vmax. Replacement of Glu313 with Asp increased the Km 8-fold and decreased the kcat 7-fold, again identifying this region of the C-terminal domain as critical to catalytic activity. Taking into account information on the copper ligands in PHM, we propose a two-domain model with a copper site in each domain that allows spatial proximity between previously described copper ligands and residues identified as catalytically important.  相似文献   

14.
3beta-(Iodoacetoxy)dehydroisoandrosterone (3beta-IDA), an analogue of the electrophilic substrate, Delta5-androstene-3,17-dione, as well as an analogue of several other steroid inhibitors of glutathione S-transferase, was tested as an affinity label of rat liver glutathione S-transferase, isozyme 1-1. A time-dependent loss of enzyme activity is observed upon incubation of 3beta-IDA with the enzyme. The rate of enzyme inactivation exhibits a nonlinear dependence on 3beta-IDA concentration, yielding an apparent Ki of 21 microM. Upon complete inactivation of the enzyme, a reagent incorporation of approximately 1 mol/mol of enzyme subunit or 2 mol/mol of enzyme dimer is observed. Protection against inactivation and incorporation is afforded by alkyl glutathione derivatives and nonsubstrate steroid ligands such as 17beta-estradiol-3,17-disulfate but, surprisingly, not by Delta5-androstene-3,17-dione or any other electrophilic substrate analogues tested. These results suggest that the site of reaction is within the nonsubstrate steroid binding site of the enzyme, which is distinguishable from the electrophilic substrate binding site, near the active site of the enzyme. Two cysteine residues, Cys17 and Cys111, are modified in nearly equal amounts, despite an average reagent incorporation of 1 mol/mol enzyme subunit. Isolation of enzyme subunits indicates the presence of unmodified, singly labeled, and doubly labeled subunits, consistent with mutually exclusive modification of cysteine residues across enzyme subunits; i.e., modification of Cys111 on subunit A prevents modification of Cys111 on subunit B and similarly for Cys17. Molecular modeling analysis suggests that Cys17 and Cys111 are located in the nonsubstrate steroid binding site, within the cleft between the subunits of the dimeric enzyme.  相似文献   

15.
The effects of several known inhibitors and activators of peroxidase-catalyzed reactions have been studied on the NADPH oxidase activity of granules isolated from polymorphonuclear leukocytes at rest or during phagocytosis. Redogenic substances, such as ascorbate or hydroquinone, and superoxide dismutase, which are known to inhibit peroxidase-catalyzed reactions, also inhibited the NADPH oxidase activity of granules. Oxidogenic substances, such as guaiacol or resorcinol, and manganese, which are known to stimulate peroxidase-catalyzed reactions, also activated the NADPH oxidase activity of granules. Cyanide, an inhibitor of peroxidase-catalyzed reactions, inhibited the NADPH oxidase activity of granules isolated from resting leukocytes but only slightly affected that of granules isolated from phagocytosing cells, as previously reported. A list of the properties of the NADPH oxidase activity of granules and of peroxidase oxidase activity is given. The arguments in favor of and those against a possible identity of the two activities are discussed.  相似文献   

16.
Peroxidase (POD) activity was investigated in Catharanthus roseus cell suspensions cultured under different hormonal conditions. Depletion of 2,4-dichlorophenoxyacetic acid (2,4-D) from the culture medium enhanced POD activity in cells and spent medium. Addition of phytohormones, in particular the auxin 2,4-D, reduced POD activity in medium and cellular compartments and enhanced ionically cell-wall bound POD. The differential modulation of POD is due to hormone effects on synthesis and/or accumulation of POD, rather than on the secretion process. Qualitative analysis showed that 2,4-D, but not cytokinins, regulated the synthesis of a basic isoform. The cytokinin treatment seemed to affect acidic rather than basic isoforms. The presence of basic POD is correlated with the capacity of cells to produce indole alkaloids. The major extracellular basic isoperoxidase was purified to homogeneity from culture medium of Catharanthus roseus cell suspensions. The isolated peroxidase is a haem protein with a M(r) of 33,000 and a pI close to 9. The effect of pH on peroxidase activity was studied using guaiacol as substrate and the optimum pH determined at 25 degrees was 6.0. This enzyme acted on guaiacol, 2,2'-azino-bis-(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS), o-dianisidine, o-phenylenediamine (o-PD) and pyrogallol, but had no effect on syringaldazine or coniferyl alcohol substrates.  相似文献   

17.
In the high-resolution crystal structures of two lignin peroxidase isozymes from the white rot fungus Phanerochaete chrysosporium a significant electron density at single bond distance from the C beta of Trp171 was observed and interpreted as a hydroxy group. To further clarify the nature of this feature, we carried out tryptic digestion of the enzyme and isolated the Trp171 containing peptide. Under ambient conditions, this peptide shows an absorbance spectrum typical of tryptophan. At elevated temperature, however, the formation of an unusual absorbance spectrum with lambda max = 333 nm can be followed that is identical to that of N-acetyl-alpha, beta-didehydrotryptophanamide, resulting upon water elimination from beta-hydroxy tryptophan. The Trp171 containing tryptic peptide isolated from the recombinant and refolded lignin peroxidase produced from Escherichia coli does not contain the characteristic 333 nm absorbance band at any temperature. However, treatment with 3 equiv of H2O2 leads to complete hydroxylation of Trp171. Reducing substrates compete with this process, e.g., in the presence of 0.5 mM veratryl alcohol, about 7 equiv of H2O2 is necessary for complete modification. We conclude that the hydroxylation at the C beta of Trp171 is an autocatalytic reaction which occurs readily under conditions of natural turnover, e.g., in the ligninolytic cultures of P. chrysosporium, which are known to contain an oxidase-based H2O2-generating system. No dependence on dioxygen was found for this oxidative process. Chemical modification of fungal lignin peroxidase with the tryptophan-specific agent N-bromo succinimide leads to a drastically reduced activity with respect to the substrate veratryl alcohol. This suggests that Trp171 is involved in catalysis and that electron transfer from this surface residue to the oxidized heme cofactor is possible under steady-state conditions.  相似文献   

18.
A new type of peroxidase enzyme, named thioredoxin peroxidase (TPx), that reduces H2O2 with the use of electrons from thioredoxin and contains two essential cysteines was recently identified. TPx homologs, termed peroxiredoxin (Prx), have also been identified and include several proteins, designated 1-Cys Prx, that contain only one conserved cysteine. Recombinant human 1-Cys Prx expressed in and purified from Escherichia coli has now been shown to reduce H2O2 with electrons provided by dithiothreitol. Furthermore, human 1-Cys Prx transiently expressed in NIH 3T3 cells was able to remove intracellular H2O2 generated in response either to the addition of exogenous H2O2 or to treatment with platelet-derived growth factor. The conserved Cys47-SH group was shown to be the site of oxidation by H2O2. Thus, mutation of Cys47 to serine abolished peroxidase activity. Moreover, the oxidized intermediate appears to be Cys-SOH. In contrast to TPx, in which one of the two conserved cysteines is oxidized to Cys-SOH and then immediately reacts with the second conserved cysteine of the second subunit of the enzyme homodimer to form an intermolecular disulfide, the Cys-SOH of 1-Cys Prx does not form a disulfide. Neither thioredoxin, which reduces the disulfide of TPx, nor glutathione, which reduces the Cys-SeOH of oxidized glutathione peroxidase, was able to reduce the Cys-SOH of 1-Cys Prx and consequently could not support peroxidase activity. Human 1-Cys Prx was previously shown to exhibit a low level of phospholipase A2 activity at an acidic pH; the enzyme was thus proposed to be lysosomal, and Ser32 was proposed to be critical for lipase function. However, the mutation of Ser32 or Cys47 has now been shown to have no effect on the lipase activity of 1-Cys Prx, which was also shown to be a cytosolic protein. Thus, the primary cellular function of 1-Cys Prx appears to be to reduce peroxides with the use of electrons provided by an as yet unidentified source; the enzyme therefore represents a new type of peroxidase.  相似文献   

19.
Earlier studies with Arabidopsis thaliana exposed to ultraviolet B (UV-B) and ozone (O3) have indicated the differential responses of superoxide dismutase and glutathione reductase. In this study, we have investigated whether A. thaliana genotype Landsberg erecta and its flavonoid-deficient mutant transparent testa (tt5) is capable of metabolizing UV-B- and O3-induced activated oxygen species by invoking similar antioxidant enzymes. UV-B exposure preferentially enhanced guaiacol-peroxidases, ascorbate peroxidase, and peroxidases specific to coniferyl alcohol and modified the substrate affinity of ascorbate peroxidase. O3 exposure enhanced superoxide dismutase, peroxidases, glutathione reductase, and ascorbate peroxidase to a similar degree and modified the substrate affinity of both glutathione reductase and ascorbate peroxidase. Both UV-B and O3 exposure enhanced similar Cu,Zn-superoxide dismutase isoforms. New isoforms of peroxidases and ascorbate peroxidase were synthesized in tt5 plants irradiated with UV-B. UV-B radiation, in contrast to O3, enhanced the activated oxygen species by increasing membrane-localized NADPH-oxidase activity and decreasing catalase activities. These results collectively suggest that (a) UV-B exposure preferentially induces peroxidase-related enzymes, whereas O3 exposure invokes the enzymes of superoxide dismutase/ascorbate-glutathione cycle, and (b) in contrast to O3, UV-B exposure generated activated oxygen species by increasing NADPH-oxidase activity.  相似文献   

20.
Solution two-dimensional 1H NMR studies have been carried out on cyanide-inhibited horseradish peroxidase isozyme C (HRPC-CN) to explore the scope and limitations of identifying residues in the heme pocket and substrate binding site, including those of the "second sphere" of the heme, i.e. residues which do not necessarily have dipolar contact with the heme. The experimental methods use a range of experimental conditions to obtain data on residue protons with a wide range of paramagnetic relaxivity. The signal assignment strategy is guided by the recently reported crystal structure of recombinant HRPC and the use of calculated magnetic axes. The goal of the assignment strategy is to identify signals from all residues in the heme, as well as proximal and distal, environment and the benzhydroxamic acid (BHA) substrate binding pocket. The detection and sequence specific assignment of aromatic and aliphatic residues in the vicinity of the heme pocket confirm the validity of the NMR methodologies described herein. Nearly all residues in the heme periphery are now assigned, and the first assignments of several "second sphere" residues in the heme periphery are reported. The results show that nearly all catalytically relevant amino acids in the active site can be identified by the NMR strategy. The residue assignment strategy is then extended to the BHA:HRPC-CN complex. Two Phe rings (Phe 68 and Phe 179) and an Ala (Ala 140) are shown to be in primary dipolar contact to BHA. The shift changes induced by substrate binding are shown to reflect primarily changes in the FeCN tilt from the heme normal. The present results demonstrate the practicality of detailed solution 1H NMR investigation of the manner in which substrate binding is perturbed by either variable substrates or point mutations of HRP.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号