共查询到20条相似文献,搜索用时 403 毫秒
1.
2.
3.
针对电力负荷随机性、波动性以及非线性因素所导致预测精度不高等问题,提出了一种基于变分模态分解(VMD)与麻雀搜索算法(SSA)优化的最小二乘支持向量机(LSSVM)短期负荷预测模型。该方法首先借助VMD将原始负荷时间序列分解成不同频率的本征模态函数(IMF)和残差分量(Res),然后对各分量建立不同的LSSVM预测模型并利用SSA进行参数优化,最后将各分量预测值组合得到最终的预测结果。以比利时蒙斯大学和中国河南省某地区两组真实数据为例进行预测分析,将预测结果与LSSVM、VMD-LSSVM、SSA-LSSVM模型预测值对比,得出本文方法的两组数据MAPE值分别为1.5016%、4.765%,远低于其他模型。结果表明本文组合预测模型在预测精度上具有一定的优越性。 相似文献
4.
5.
6.
在传统神经网络负荷预测的基础上,采用蚁群算法优化神经网络的权值,同时再用模糊逻辑对影响负荷的随机因素进行修正,提出了改进的蚁群神经网络算法。对四川某500kV变电站进行短期负荷预测,结果表明这一算法能获得较高的预测精度,是一种行之有效的短期负荷预测方法。 相似文献
7.
8.
在电力系统的发展过程中,电力负荷充当着非常重要的角色,电力负荷预测的精度显得尤为重要。为了提高短期电力负荷预测的精度,提出了改进的粒子群-BP神经网络混合优化算法。采用自适应惯性权重改进的粒子群算法,使得粒子群算法的收敛速度和收敛精度有所提高,改进后的算法优化神经网络的过程中,对BP神经网络的初始权值和阈值等参数进行改善,并建立基于IPSO-BP算法模型对短期电力负荷进行预测。以某地的历史负荷数据进行训练仿真,结果表明,该模型的收敛速度和预测精度优于传统粒子群-BP神经网络模型。模型改善了粒子群算法和神经网络各自的缺点,提高了BP神经网络的泛化能力。该模型提高了短期电力负荷预测精度,平均相对误差在1%左右,模型可用于电力系统的短期负荷预测。 相似文献
9.
10.
11.
基于改进的模糊神经网络的短期负荷预测 总被引:1,自引:0,他引:1
影响短期电力负荷预测的因素是多方面的,除节假日、日期类型和气象因素外,还有拉电或限电行为、持续高温等许多干扰因素。针对这些干扰因素,引入了"干预项",进而提出了一种改进的模糊神经网络预测的新方法;阐述了应用该方法进行短期负荷预测的基本原理、网络模型和预测过程。实例分析中分别给出了经"干预项"和未经"干预项"处理后的预测结果,未经"干预项"处理的预测误差明显偏大。同时采用三种方法对不同日期类型进行预测,结果表明新方法的预测误差最小,预测精度较高。 相似文献
12.
针对电力负荷序列波动性和预测精度不高的问题,提出一种基于变分模态分解、排列熵和改进金豺算法优化双向长短期记忆网络的预测模型。首先,利用变分模态分解重构原始负荷序列,再采用排列熵理论对分解后的子序列进行熵值重组;然后,利用改进金豺算法对双向长短期记忆网络的参数进行优化,并对每个子序列建立预测模型;最后,组合各模型结果得到最终预测值。实验结果表明,本文模型预测精度更高,与真实值拟合度更好。 相似文献
13.
基于改进灰色模型的超短期负荷预测 总被引:6,自引:1,他引:5
通过分析现行的超短期负荷预测方法存在的问题,提出了应用灰色模型纵向预测和横向趋势外推修正的超短期负荷预测新方法.引入最新的历史负荷信息,对纵向预测的近似曲线进行修正,纵向预测值能反映出总体的发展规律,而横向修正值又体现最新态势变化,并把选择相似日的新思路融合在预测过程中.用实际数据检验表明,该方法能对预测精度有所改善,具有较好的工程实用性. 相似文献
14.
精确的负荷预测是电力系统规划、设计的有力支撑,是电网安全经济运行提供重要保障。实际应用中,存在由于数据采集设备故障、系统突发事件导致相关数据资料不准确从而影响短期负荷预测结果的情况。本文提出基于小波变换的长短期记忆神经网络负荷短期负荷方法WT-LSTM(wavelet transform -long short-term memory),利用小波变换的时频特性对负荷数据的伸缩变换进行细化,实现高频系数量化处理;结合长短期记忆神经网络的梯度计算,提高负荷预测的准确性和可靠性。通过变电站负荷数据以及区域办公楼实验,仿真结果表明本文方法能够有效处理负荷原始数据中的噪声,从而提高负荷预测精度和鲁棒性。 相似文献
15.
16.
提出了一种改进的径向基函数神经网络预测模型。模型中,应用改进K-均值聚类算法确定该神经网络的聚类中心,运用最小均值方差算法确定了神经网络的权值,同时考虑了温度、天气状况、日期类型对负荷的影响。经初步测试表明,该方法具有良好的预测精度。 相似文献
17.
18.
针对短期电力负荷预测因受天气、温度、节假日等多重不确定性因素影响而造成精度低的问题,提出一种基于改进Autoformer模型的短期电力负荷预测模型。改变序列分解预处理的惯例,设计深度模型的内部分解模块,该模块提取模型中隐藏状态的内在复杂时序趋势,使得模型具有复杂时间序列的渐进分解能力;提出Nystrom自注意力机制,该机制利用Nystrom方法来逼近标准的自注意力机制。某地电力负荷预测实验结果表明,所提模型比基于标准Autoformer模型的短期电力负荷预测模型的时间复杂度更低,准确率更高。 相似文献
19.