首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Y2O2S:Tb纳米晶的能量传递过程的研究   总被引:5,自引:0,他引:5  
研究了Y2O2S:Tb纳米晶的发光性质和能量传递过程,根据浓度猝灭曲线分析了纳米Y2O2S中引起^5D3和^5D4能级浓度猝灭的相互作用类型分别为电偶极-电偶极和交换相互作用。纳米Y2O2S中Tb离子^5D3-^7F3跃迁的发光寿命与相同掺杂浓度的体材料相比明显缩短,根据引起浓度猝灭的相互作用类型对发光衰减曲线进行拟合,得到理论和试验一致的结果。  相似文献   

2.
研究了Y2O2S∶Tb纳米晶的发光性质和能量传递过程,根据浓度猝灭曲线分析了纳米Y2O2S中引起5D3和5D4能级浓度猝灭的相互作用类型分别为电偶极-电偶极和交换相互作用。纳米Y2O2S中Tb离子的5D3-7F5跃迁的发光寿命与相同掺杂浓度的体材料相比明显缩短,根据引起浓度猝灭的相互作用类型对发光衰减曲线进行拟合,得到理论和试验一致的结果。  相似文献   

3.
采用固相法和水热法制备了BaAl2B2O7:Eu^3+系列发光体,研究了制备方法对其光谱特性的影响、助熔剂对发光强度和微观形貌的影响、激活剂浓度对发射强度的影响。研究表明;固相法制备的发光体Eu^3+存在621nm的^5D0→^7F2强发射和772nm的^5Do→^7F5.6弱发射,通过对多种助熔剂优选NaF为最佳的助熔剂,掺杂NaF的发光体仅在772nm的发射大幅度增强,说明助熔剂对发射光谱的特定波长有突出的增强作用:当掺杂Eu^3+浓度较低时和水热法制备的荧光体在455nm存在Eu^2+的4f^65d^1→^8S7/2强发射;此外还研究了BaAl2B2O7:Eu^3+中Eu^2+→Eu^3+的能量传递。  相似文献   

4.
在空气中分别采用Sol—Gel法和溶液燃烧法制备了稀土Eu激活的BaMgAl10O17(BAM)荧光粉,并对其光谱特性进行了对比分析。结果表明,Sol—Gel法制备的BAM的荧光光谱与+3价Eu离子的光谱特征完全相符,为红光发射,其发射主峰位于617nm,属于占据非对称中心格位Eu^3+的^5Do→^7F2的电偶极(ED)特征发射,而且由于晶场的作用使多重态的^7FJ分裂为多个stark能级,导致^5Do→^7F1、^5Do→^7F3的发射峰裂分为多重峰;而溶液燃烧法制备的BAM的发光呈Eu^2+离子的特征发射,为典型的蓝色发光,其发射光谱是一个最大峰值位于450nm的宽带谱,归属于Eu^2+离子的4f^65d→4f^7(^8S7/2)宽带允许跃迁。  相似文献   

5.
用溶胶-凝胶法制备了Ca2Gd8(SiO4)6O2:Tb^3+薄膜,用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和荧光光谱仪对所得发光薄膜进行了表征。XRD的结果表明薄膜在1000℃完全结晶,并且与标准卡片符合得很好。AFM和SEM的结果表明薄膜表面均匀,没有裂痕,粒子排列紧密,平均直径为90nm,薄膜的厚度为1-3μm。当用233nm激发时,Tb^3+的发射光谱由蓝光发射和绿光发射两部分组成,前者对应^5D3-^7FJ(J=6,5,4,其峰值分别位于376,418,440nm);后者对应^5D4-^7FJ(J=6,5,4,3,其峰值分别位于490,544,587,623nm)。在Ca2Gd8(SiO4)6O2薄膜基质中,Tb^3+的最佳掺杂浓度为Gd^3+的9mol%。  相似文献   

6.
用溶胶-凝胶法制备了Ca2Gd8(SiO4)6O2Tb3+薄膜,用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和荧光光谱仪对所得发光薄膜进行了表征.XRD的结果表明薄膜在1000℃完全结晶,并且与标准卡片符合得很好.AFM和SEM的结果表明薄膜表面均匀,没有裂痕,粒子排列紧密,平均直径为90 nm,薄膜的厚度为1.3μm.当用233 nm激发时,Tb3+的发射光谱由蓝光发射和绿光发射两部分组成,前者对应5D3-7FJ(J=6,5,4,其峰值分别位于376,418,440 nm);后者对应5D4-7FJ(J=6,5,4,3,其峰值分别位于490,544,587,623 nm).在Ca2Gd8(SiO4)6O2薄膜基质中,Tb3+的最佳掺杂浓度为Gd3+的9mol%.  相似文献   

7.
用溶胶-凝胶法制备了Ca2Gd8(SiO4)6O2:Tb3+薄膜,用X射线衍射(XRD)、原子力显微镜(AFM)、扫描电子显微镜(SEM)和荧光光谱仪对所得发光薄膜进行了表征.XRD的结果表明薄膜在1000℃完全结晶,并且与标准卡片符合得很好.AFM和SEM的结果表明薄膜表面均匀,没有裂痕,粒子排列紧密,平均直径为90 nm,薄膜的厚度为1.3μm.当用233 nm激发时,Tb3+的发射光谱由蓝光发射和绿光发射两部分组成,前者对应5D3-7FJ(J=6,5,4,其峰值分别位于376,418,440 nm);后者对应5D4-7FJ(J=6,5,4,3,其峰值分别位于490,544,587,623 nm).在Ca2Gd8(SiO4)6O2薄膜基质中,Tb3+的最佳掺杂浓度为Gd3+的9mol%.  相似文献   

8.
采用微波辅助溶胶-凝胶法制备了系列绿色发光粉NaLa31-x(MoO4)2:Tb+x(x=0.02,0.1,0.15)。用X射线粉末衍射仪和荧光分光光度计等分析和表征所合成样品的物相结构和发光性质。结果表明:所合成的NaLa(MoO4)2:Tb3+晶体结构与NaLa(MoO4)2相似,属四方晶系结构;样品的激发光谱为位于250~350 nm的1个宽带,最大激发峰位于300 nm处;发射光谱由一系列尖峰组成,最强的发射峰位于544 nm处,归属于Tb3+的5D4-7F5跃迁。NaLa(MoO4)2:Tb3+的发光强度随Tb3+掺杂浓度的增加逐渐加强,当Tb3+浓度为10 mol%时发光强度最大,而后随Tb3+浓度的增加而降低,发生浓度猝灭。根据Dexter能量共振理论,该浓度猝灭系Tb3+的电偶极-电偶极的相互作用所致。通过含氧酸根阴离子(SO2-4)的掺杂有效提高了NaLa(MoO4)2:Tb3+体系的发光亮度。  相似文献   

9.
(Y,Gd)2O3:Eu^3+纳米粒子制备及光谱特性   总被引:2,自引:0,他引:2  
用湿化学共沉淀法制备了(Y,Gd)2O3:Eu3 纳米粒子.用XRD,TEM,SEM及差示/热重分析(DSC/TG)手段对粉体进行了表征.用荧光光度计分析了样品的激发光谱和发射光谱.结果表明:在煅烧温度为800℃保温2 h时,合成出近似球形、粒径均匀且分散性好的(Y,Gd)2O3:Eu3 纳米粒子,一次颗粒尺寸约为20 nm.样品在波长为612.0 nm监控光下激发,出现235和250 nm两个激发峰,分别为(Y,Gd)2O3基质吸收和Eu3 迁移态(CTS)吸收造成的.两个波长激发下的发射光谱峰强度前者高于后者.当掺杂Eu3 的摩尔浓度为3%时,发射光谱对应5D0→7F2能级跃迁的相对峰强度最大,当Eu3 掺杂的摩尔浓度为7%时,相对峰强度反而降低,这是由于Eu3 的浓度猝灭造成的.  相似文献   

10.
以H3BO3作助熔剂,用高温固相法在1400℃、保温4 h的条件下成功制备了LaMgAl11O19:Tb单相粉末样品并研究了其紫外光、真空紫外光激发下的一系列发光特性.在紫外光(254 nm)、真空紫外光(147 nm)激发下,观察到Tb^3+很强的^5D4→^7FJ(=6,5,4,3)的跃迁发光.分析了LaMgAl11O19:Tb^3+的发光强度与Tb^3+掺杂浓度的关系.  相似文献   

11.
阐述了用氢代乙炔的必要性.通过时HGQU2000/315火焰电孤焊割机的考察和试用证实了用氢代乙炔的可行性,比较了两种气体的性质并提出了使用特性差异和注意事项.提出了进一步探索的问题。  相似文献   

12.
通过热分解法制备了含IrO2-MnO2中间层Ti/RuO2-TiO2-SnO2电极,采用SEM、EDX、XRD、CV等检测方法对中间层进行表征,同时采用强化加速寿命试验对电极电化学稳定性进行表征。结果表明:450℃时前躯体完全氧化并形成固溶体,制备的中间层晶粒细小,表面结构致密,电化学孔隙率小。添加中间层使Ti/RuO2-TiO2-SnO2电极强化寿命由未加中间层的7.5h提高到995.8h,远高于国家标准20h。  相似文献   

13.
H2O2在TiO2可见光催化反应中的作用机理   总被引:3,自引:0,他引:3  
以锐钛矿、金红石及混晶TiO2作光催化剂,研究了H2O2在TiO2可见光催化反应过程中的作用机理.结果表明,H2O2在TiO2表面活性位吸附后可拓宽TiO2的光吸收范围至可见光区;通过对反应体系的荧光光谱分析显示,金红石型TiO2在H2O2存在条件下,经可见光激发可持续稳定产生羟基自由基-OH.光催化实验表明,往反应体系中加入H2O2后,3种光催化剂均能可见光催化降解苯酚,且金红石型TiO2显示出最高的催化活性,反应120 min对苯酚的降解率达80%;在TiO2可见光催化反应过程中,由锐钛矿型TiO2经一系列复杂反应产生H2O2,生成的H2O2虽只是一中间产物,但对污染物的可见光催化降解起决定性作用.  相似文献   

14.
为了研究ZrO_2含量对SiO_2-Al_2O_3-MgO-F-ZrO_2系微晶玻璃析晶特征的影响,采用传统的熔融-冷淬法制备了不同ZrO_2含量的玻璃试样.结果表明:在所研究的玻璃中,ZrO_2的最大溶解量在5.0%(质量分数,下同)左右,超过其饱和溶解度后将析出氧化锆相.玻璃样品在700 ℃处理发生非晶态的分相现象,分相区主要是氟元素的偏聚,而没有形成锆元素的偏聚.在不同氧化锆含量的玻璃中析出的晶体有氟云母和少量ZrO_2与莫来石相.ZrO_2加入量的提高有助于在低温下析晶,但ZrO_2含量的提高抑制了氟云母晶体的析出.随着玻璃中ZrO_2含量的提高,析出晶体从玫瑰花形向团簇状转变.  相似文献   

15.
添加Sn制备三元IrO2-Ta2O5-SnO2/Ti涂层   总被引:1,自引:0,他引:1  
通过热分解法制备了含不同摩尔比SnO2的IrO2-Ta2O5-SnO2/Ti涂层.采用X射线衍射(XRD)和扫描电镜(SEM)分析和测试了所获涂层的晶体结构和表面形貌特征;通过强化寿命试验测试其耐腐蚀性能.结果表明涂层中出现固溶体、表面形貌呈密实结构有助于涂层耐腐蚀性能的提高.添加SnO2含量较高时可导致涂层中析出SnO2,并降低涂层耐腐蚀性能.  相似文献   

16.
方正  陈新民 《金属学报》1989,25(4):81-88
考虑到氧的影响,本文导出一组H_2O-H_2及H_2O-H_2-惰气混合气体氧位新的表征式。经典表征式是该公式的特例。本文讨论了微量氧存在时对平衡气氛影响的各种因素以及减小误差的最佳配气条件,同时评价了某些用H_2O-H_2(或H_2O-H_2-惰气)混合气体控制氧位的平衡实验的可靠程度。  相似文献   

17.
By taking the effect of oxygen contents into account,a new set of formulae which representsthe oxygen potentials of H_2O-H_2 and H_2O-H_2-inerts gas mixtures has been derived.Classi-cal representation is only a particular case of it.Some of the variables affecting equilibriumatmosphere when trace oxygen is present and optimum preparation of the gas mixtures to min-imize errors have been discussed.The reliability of some of previous equilibrium experimentsunder the oxygen potentials controlled by H_2O-H_2 or H_2O-H_2-inerts gas mixtures has alsobeen criticized.  相似文献   

18.
纳米CeO2改性渗Cr涂层在5%O2 - 0.1%SO2-N2气氛中的高温氧化   总被引:4,自引:0,他引:4  
用Ni-CeO2复合电镀后包埋渗Cr的方法在低碳钢上制备了CeO2改性的渗Cr涂层.在900℃、含与不含0.1%SO2的5%O2+N2气氛中,与低碳钢渗Cr及镀Ni渗Cr涂层的氧化行为进行了对比研究,获得如下结果:(1)CeO2改性的渗Cr涂层抗高温氧化性能最好,低碳钢渗Cr涂层最差;(2)SO2促进了碳钢渗Cr及镀Ni渗Cr涂层的退化,而对CeO2改性渗Cr涂层的氧化影响不大.利用光学显微镜(OM)、X光衍射(XRD)、扫描电镜与能谱(SEM/EDAX)对氧化前后试样分析表明:CeO2通过细化改性渗Cr涂层晶粒以及改变渗层Cr含量,避免氧化膜/涂层界面附近由于Cr的贫化而析出Ni2Cr相,延缓α相向γ相的快速转变,来提高氧化膜的抗剥落性能;同时,CeO2还通过改变涂层氧化膜的生长机制降低了SO2对涂层抗高温氧化性能的影响.  相似文献   

19.
采用Pechini方法制备不同Sn含量的Ti/IrO2-Ta2O5-SnO2纳米氧化物阳极,并运用SEM、EDX、XRD等分析手段和析氧电位、循环伏安、强化电解等方法对阳极的表面形貌、微观结构和电化学性能进行研究。结果表明,制备的氧化物涂层由(IrSn)O2固溶体和非晶态的Ta2O5构成,组成与名义成分基本一致。随着Sn含量的增加,氧化物涂层表面裂纹增多。Sn的加入使Ti/IrO2-Ta2O5-SnO2氧化物阳极的析氧电位升高,稳定性降低。  相似文献   

20.
N_2O—C_2H_2火焰原子吸收分光光度法测定钨制品中的钇   总被引:2,自引:0,他引:2  
陈国华 《硬质合金》1994,11(3):160-162
本文研究了N_2O—C_2H_2火焰原子吸收分光光度法测定钨制品中钇的条件,拟定了分析方法.方法相对标准偏差1. 2%~3%,回收率95%以上.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号