首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
采用感应熔炼方法制备了A2B7型La0.75Mg0.25Ni3.5-xAlx(x=0,0.02,0.06 0.1,0.3)四元贮氢合金,系统研究了Al元素部分替代Ni对A2B7型La0.75Mg0.25Ni3.5合金相结构及电化学性能的影响。X射线衍射(XRD)分析表明:La0.75Mg0.25Ni3.5由单一La2Ni7相组成:Al元素加入后,开始出现CaCu5型LaNi5相,当x=0.3时,LaNis相成为合金的主相。Rietveld分析表明:随着Al含量的增加,LaNi5相逐渐增多,Al的加入利于CaCu5型LaNi5相的形成。电化学测试表明:Al替代Ni对A2B7型合金La0.75Mg0.25Ni3.5电极活化性能影响不大:而最大放电容量随Al在La0.75Mg0.25Ni3.5-xAlx,合金中替代量的增加而减小。当放电电流密度为1600mA/g时,合金的倍率放电性能由68.8%(x=0)增加到81.16%(x=0.1)然后减小到65.67%(x=0.3)。此外,La0.75Mg0.25Ni3.5-xAlx合金电极循环稳定性先增加而后下降。x=0.06时合金电极容量保持率最大(S100=85.21.%)。  相似文献   

2.
Al对La—Mg-Ni系贮氢合金电极电化学性能的影响   总被引:4,自引:0,他引:4  
采用固相扩散法制备La0.7Mg0.3Ni3.5-xAlx(x=0,0.1,0.3,0.7,1.0)和La0.7Mg0.3Ni2.8Co0.7-xAlx(x=0,0.1,0.2,0.3,0.4)贮氧合金,采用X射线衍射、能谱分析及循环伏安等方法分析含金的相结构和电极电化学性能,研究元素Al替代对合金电化学性能的影响.结果表明:合金由LaNi5、La2Ni7和LaNi3三相组成,随着Al替代量的增加,La2Ni7相晶胞逐渐膨胀,LaNi5相大量减少,LaNi3相增加,La2Ni7相有利于合金电化学性能的提高,然而过高的Al含量会对合金的放电性能带来不利影响.La0.7Mg0.3Ni3.4Al0.1和La0.7Mg0.3Ni2.8Co0.6Al0.1合金电极的最大放电容量分别为354.5 mA·h/g和373.1 mA·h/g.循环伏安测试显示较明显的氧化峰和还原峰,且峰电位差较小,反映合金电极较好的吸放氢反应可逆性.  相似文献   

3.
研究了少量Al替代Mg(x=0.1)对La2Mg1-xAlxNi7.5Co1.5贮氢合金电化学循环稳定性的影响.经过充放电循环后,La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1)合金中的LaNi3相和αLa2Ni7相仍然保持PuNi3型结构和Ce2Ni7型结构,没有发生变化,此外,在这2种合金中出现少量新的物相La(OH)3,Mg(OH)2和Ni.LaNi3相和αLa2Ni7相吸氢形成氢化物后也保持PuNi3型结构和Ce2Ni7型结构.La2MgNi7.5Co1.5吸氢后,LaNi3相和αLa2Ni7相晶胞均呈各向异性膨胀,但LaNi3相的各向异性膨胀程度及晶胞体积膨胀率明显大于αLa2Ni7相.相比La2MgNi7.5Co1.5氢化物,Al替代Mg对La2Mg0.9Al0.1Ni7.5Co1.5氢化物中的αLa2Ni7相吸氢体积膨胀的抑制作用很小,但Al替代Mg使该氢化物中LaNi3相的c轴膨胀率和晶胞体积v的膨胀率均明显降低.电化学吸放氢循环后合金的粒径变化及形貌观察表明,La2Mg0.9A10.1Ni7.5Co1.5合金的抗粉化能力优于La2MgNi7.5Co1.5合金,这是Al替代Mg改善La2MgNi7.5Co1.5合金电极电化学循环稳定性的重要原因.  相似文献   

4.
采用感应熔铸+退火处理(常规冷速)及快速凝固方法制备了La0.83Mg0.17Ni3.25Al0.15Mn0.1储氢合金.系统研究了快速凝固对合金的相结构、微观组织及电化学性能的影响.X射线衍射分析表明,冷却速率对合金的相组成影响不大,但对各相丰度影响明显.随着冷却速率的增加,合金中的LaNi5相(CaCu5型结构)丰度增加,LaNi3相(PuNi3型结构)丰度减少.EPMA分析表明,快速凝固方法制备的La0.83Mg0.17Ni3.25Al0.15Mn0.1储氢合金为扁平状晶粒组织.合金电极的电化学测试表明,冷却速率对合金的活化性能影响不大.随冷速的增加,合金的最大放电容量减小,合金电极的循环稳定性改善明显,铜辊线速度为15 m/s时容量保持率达到97.03%.  相似文献   

5.
采用X射线衍射、电子探针和电化学测试研究了La2Mg1-xAlxNi7.5Co1.5(x=0.0,0.1,0.3,0.5)合金的相结构和电化学性能.XRD结果和EPMA观察表明,少量的Al替代Mg(x=0.1)不改变La2MgNi7.5Co1.5合金的相组成,合金仍然由LaNi3相和αLa2Ni7相组成,然而La2Mg0.9Al0.1Ni7.5Co1.5合金中LaNi3相的丰度明显下降,αLa2Ni7相的丰度则增加,较多的Al替代Mg改变了La2MgNi7.5Co1.5合金的相组成并导致合金中LaNi3相消失,La2Mg1-xAlxNi7.5Co1.5合金中Al含量的变化对合金中不同相晶胞参数的影响不相同.此外,少量的Al替代Mg(x=0.1)几乎不降低La2MgNi7.5Co1.5合金的贮氢容量和最大电化学放电容量,但随La2Mg1-xAlxNi7.5Co1.5合金中Al含量的增加,合金的贮氢容量、最大电化学放电容量和活化性能不断下降,Al替代Mg能明显提高La2MgNi7.5Co1.5合金的电化学循环稳定性,对提高该合金电极的高倍率放电性能也是有利的.  相似文献   

6.
研究了退火温度对A287型La1.5Mg0.5Ni7.0合金的相结构和电化学性能的影响。结果表明:铸态合金由LaNi,相、LaMgNi4相、(La,Mg)Ni3相以及Gd2Co7型相组成,退火处理后,合金由Gd2Co7型相、Ce2Ni7型相和PuNi3型(La,Mg)Ni3相组成:随着退火温度升高,PuNi3型相的丰度减小,ce2Ni7型相的丰度增加,(La,Mg)Ni3相的a轴参数、c轴参数和晶胞体积均增大;经1073K保温24h退火后,合金电极具有最高的放电容量(391.2mAh/g),退火温度升高,合金的最大放电容量略有降低:合金电极的循环稳定性随着退火温度的升高不断提高,在1173K时合金电极经150次循环后其电极容量保持率C150/Cmax=82%;合金的高倍率放电性能(HRD)随退火温度升高略有增加,在1173K时,合金电极的HRD最好(HRD900=89.0%);交换电流密度I0、极限电流密度I1及氢扩散系数D随着退火温度的升高而增大。  相似文献   

7.
采用X射线衍射、电子探针和电化学测试研究了La0.67Mg0.33Ni3.0-xAlx(x=0.0-0.35)合金的相结构和电化学性能。XRD结果和EPMA观察表明:La0.67Mg0.33Ni3.0合金由LaNi3相和La2Ni7相组成。然而La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金不含LaNi3相。研究结果表明Al替代Ni改变了La0.67Mg0.33Ni3.0合金的相结构,Al替代Ni不利于La0.67Mg0.33Ni3.0合金中LaNi3相的形成。此外,随Al含量的增加,La0.67Mg0.33Ni3.0-xAlx(x=0.1,0.2,0.35)合金的相结构也发生了变化。WDS分析表明:随La0.67Mg0.33Ni3.0-xAlx合金中X的增加,Al在LaNis相中的含量增加,但Al在LaNi2相的含量很少并且几乎不随X变化。电化学性能测试表明:Al替代Ni提高了La0.67Mg0.33Ni3.0合金电极的循环稳定性。但La0.67Mg0.33Ni3.0-xAlx合金电极的放电容量却随Al含量的增加而明显降低。  相似文献   

8.
用放电等离子烧结技术(SPS)制备La0.7Mg0.3Ni2.5Cox(x=O.1,0.2,0.3,0.4,0.5)贮氢合金。采用X射线衍射、三电极测试体系和交流阻抗法研究了合金的相结构、贮氢性能和电化学性能。结果表明:合金为多相结构,主相为(La,Mg)2Ni,和(La.Mg)Ni3相;该系列贮氢合金的贮氢容量随x值的增大先增后减,在x=0.4时贮氢容量达1.37%。最大放电容量为365.4mAh/g。合金的活化性能好(活化次数均为1次),随着x值的增加,贮氢合金的放氢平台压力升高,合金电极表面电荷转移速率增大。  相似文献   

9.
研究了Mn替代Ni对La2Mg0.9Al0.1Ni7.5-xCo1.5Mnx(x=0,0.3,0.6,0.9)贮氢合金相结构和电化学性能的影响。XRDRietveld全谱拟合分析表明:Mn替代改变了合金的物相组成和物相的丰度。LaNi3相消失,αLa2Ni7相丰度的变化表现为先增加(x=0,0.3)后减少(x=0.6,0.9),LaMgNi4相和La5Ni19相的丰度则随合金中Mn含量x的增加而增加。Mn替代Ni降低了合金的贮氢容量、最大电化学放电容量和活化性能,La2Mg0.9Al0.1Ni7.2Co1.5Mn0.3合金电极表现出最好的电化学循环稳定性,合金的高倍率放电性能随Mn含量的增加降低,这归因于交换电流密度(I0)和氢扩散系数(D)的降低。  相似文献   

10.
为改善La–Mg–Ni系A2B7型合金的电化学贮氢性能,在合金中添加一定量的Si元素,通过真空熔炼及退火处理的方法制备La0.8Mg0.2Ni3.3Co0.2Six(x=0-0.2)电极合金。研究Si元素的添加对合金结构及电化学贮氢性能的影响。结果表明,铸态及退火态合金均为多相结构,分别为Ce2Ni7型的(La,Mg)2Ni7相和CaCu5型的LaNi5相以及少量的残余相LaNi3。Si元素的添加没有改变合金的主相,但使得合金中的(La,Mg)2Ni7相减少而LaNi5相增加。添加Si显著地影响了合金的电化学性能。随着Si含量的增加,铸态及退火态合金的放电容量逐步降低,但循环稳定性却随着Si含量的增加而增强。此外,合金电极的高倍率放电性能、极限电流密度、氢扩散系数以及电化学交流阻抗谱的测试均表明合金的电化学动力学性能随着Si含量的增加先增加而后减小。  相似文献   

11.
为了改善 La-Mg-Ni 系 A2B7型电极合金的电化学循环稳定性,用 Pr 部分替代合金中的 La,并用熔体快淬工艺制备了La0.75-xPrxMg0.25Ni3.2Co0.2Al0.1(x = 0, 0.1, 0.2, 0.3, 0.4)电极合金。用 XRD、SEM、TEM 分析了铸态及快淬态合金的微观结构。结果表明,铸态及快淬态合金均具有多相结构,包括 2 个主相(La,Mg)Ni3及 LaNi5和 1 个残余相 LaNi2。熔体快淬导致 LaNi5相增加而(La,Mg)Ni3相减少。电化学测试结果表明,熔体快淬显著地提高合金的电化学循环稳定性。当淬速从 0 m/s (铸态被定义为淬速 0 m/s)增加到 20 m/s 时,x=0 合金 100 次充放循环后的容量保持率从 65.32%增加到 73.97%,x=0.4 合金的容量保持率从 79.36%增加到 93.08%。  相似文献   

12.
合金的电化学贮氢动力学性能是其应用于动力电池的重要因素。为了提高RE-Mg-Ni系A2B7型贮氢合金的动力学性能,用M(M=Pr,Zr)部分替代La,并采用快淬处理制备了La0.65M0.1Mg0.25Ni3.2Co0.2Al0.1(M=Pr,Zr)电极合金。研究了元素替代和快淬处理对合金结构及电化学贮氢动力学性能的影响。XRD及TEM结果显示,铸态及快淬态合金均为多相结构,包含(La,Mg)2Ni7和LaNi5主相以及少量的残余相LaNi2。Pr替代快淬态合金为纳米晶结构,而Zr替代快淬态合金为类非晶结构,说明Zr部分替代La促进了非晶的形成。电化学测试表明合金的高倍率放电性能(HRD)随着快淬速度的增加先增大后减小。此外,电化学阻抗谱(EIS),塔菲尔极化曲线以及电势阶跃测试均表明合金的电化学动力学性能随着快淬速度的增加先增大后减小。  相似文献   

13.
用铸造及快淬工艺制备了A2B7型电极合金,合金的名义成分为La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1 (x = 0, 0.05, 0.1, 0.15, 0.2)。深入研究了Zr替代La对合金微观结构及电化学性能的影响。用XRD、SEM、TEM分析了合金的结构。结果表明,铸态及快淬态合金均具有多相结构,含有两个主相(La,Mg)Ni3和LaNi5以及一个残余相LaNi2。Zr替代La使合金中LaNi5相明显增加,并促进快淬态合金中形成非晶相。电化学测试的结果表明,Zr替代La明显降低合金的放电容量,但显著改善合金的电化学循环稳定性。当Zr含量小于0.1时,合金的放电容量随淬速的增加而先增加后减小,合金的循环稳定性随淬速的增加而单调增加。  相似文献   

14.
The structure and electrochemical characteristics of La0.7Mg0.3Ni2.875Co0.525Mn0.1-boron composite was studied systematically. The AB3 type hydrogen storage alloys La0.7Mg0.3Ni2.875Co0.525Mn0.1 were successfully synthesized by means of inter-media alloy La2Mg17 . The alloys were composited with boron at different weight rate. From the XRD analyses, each alloy of this series is mainly composed of (La,Mg)Ni3 phase and the LaNi5 phase, and the phase abundance of each phase varies with the boron weight rate, moreover, after composition, the c and cell volumes of (La,Mg)Ni3 phase increase, and the LaNi5 phase keep the same, which indicate that the boron may enter (La,Mg)Ni3 phase. The electrochemical studies show that the maximum discharge capacity of the composites decreases, but the cycling life improved. And the high rate discharge ability and exchange impendence spectroscopy (EIS) of the AB3 alloys and its composite were also studied.  相似文献   

15.
用熔体快淬工艺制备了La-Mg-Ni系A2B7型La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05,0.1,0.15,0.2)电极合金。用XRD、SEM、TEM分析了铸态及快淬态合金的微观结构,用程控电池测试设备测试了铸态及快淬态合金电极的电化学循环稳定性,研究了快淬工艺对合金结构及电化学循环稳定性的影响,探讨了电极合金的失效机理。结果表明,快淬态合金均具有多相结构,包括两个主相(La,Mg)Ni3及LaNi5和一个残余相LaNi2。快淬处理可以显著改善合金的电化学循环稳定性。导致合金失效的主要原因是电极表面被电解液剧烈腐蚀以及合金电极在电化学循环过程中的粉化。  相似文献   

16.
1 Introduction Ni-MH batteries have been used widely by virtue of several of their advantages, such as high capacity, capable of performing a high rate charge/discharge, high resistance to overcharging and over-discharging, a long cycle life, environment…  相似文献   

17.
The La-Mg-Ni system A2B7-type electrode alloys with nominal composition La0.75-xZrxMg0.25Ni3.2Co0.2Al0.1(x=0,0.05, 0.1,0.15,0.2)were prepared by casting and melt-spinning.The influences of melt spinning on the electrochemical performances as well as the structures of the alloys were investigated.The results obtained by XRD,SEM and TEM show that the as-cast and spun alloys have a multiphase structure,consisting of two main phases(La,Mg)Ni3 and LaNi5 as well as a residual phase LaNi2.The melt spinning leads to an obvious increase of the LaNi5 phase and a decrease of the(La,Mg)Ni3 phase in the alloys.The results of the electrochemical measurement indicate that the discharge capacity of the alloys(x≤0.1)first increases and then decreases with the increase of spinning rate,whereas for x0.1,the discharge capacity of the alloys monotonously falls.The melt spinning slightly impairs the activation capability of the alloys,but it significantly enhances the cycle stability of the alloys.  相似文献   

18.
为了改善La-Mg-Ni系A2B7型电极合金的动力学性能,用M(M=Zr,Pr)部分替代合金中的A侧元素La。用真空快淬技术制备了La0. 55 M0. 2 Mg0. 25 Ni3.2C00.2 Al0.1(M=Zr,Pr)电极合金,探索了快淬工艺参数对合金电化学贮氢动力学性能的影响。用XRD、SEM及TEM表征了铸态及快淬态合金的结构,结果发现,铸态及快淬态合金均由多相组成,包括两个主相(La,Mg)2Ni7和LaNi5以及残余相LaNi2。快淬Pr替代合金具有微晶、纳米晶结构,而在快淬Zr替代合金中发现明显的非晶相。电化学测试结果表明,合金的高倍率放电能力随淬速的增加先增加后减小。电化学交流阻抗(EIS)、Tafd极化曲线及电位阶跃测试的结果都表明,合金的电化学贮氢动力学性能随淬速的增加先上升后下降。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号