首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
电极材料非晶态氢氧化镍的电化学活性   总被引:2,自引:0,他引:2  
通过快速冷冻沉淀法制备非晶态氢氧化镍粉体,微粒形状不规则,具有较小粒度分布和较大比表面积。经测量,发现其样品粉体拉曼光谱(Raman)峰较多,差热分析(DSC)发现其分解温度较低,为295.18℃,结果分析表明活性较高。将所制备的非晶态Ni(OH)2粉体作为活性物质合成正极材料,并组装成MH—Ni碱性模拟电池,在恒流50mA/g下充电8h,25mA/g下放电,终止电压为1.0V时,其放电工作电压平稳且时间长,放电平台为1.26v。放电比容量可达333.22mAh/g,高于β-Ni(OH)2的理论比容量289mAh/g,循环伏安曲线的测试结果表明,可逆性能较好,在碱性电解液中结构稳定。  相似文献   

2.
采用Yb/Co氢氧化物共沉淀包覆方法和Ca3(PO4)2与Co(OH)2分别沉淀分层包覆方法在球形Ni(OH)2的表面进行了均匀的包覆。前者利用COSO4,YbCl3和NaOH溶液进行共沉淀包覆,后者是先在球形Ni(OH)2的表面沉淀包覆Ca3(PO4)2,然后再沉淀包覆Co(OH)2。结果显示,两种包覆方法均能有效地提高球形Ni(OH)2的高温(60℃)性能。按照Yb/Co=0.75%:2%共沉淀包覆的试样制成AA型电池后,在60℃下1C放电的容量保持率达到常温下的90%。而2%Ca3(P04)2与2%Co(OH)2分层包覆后的球形Ni(OH)2制成AA型电池后,在60℃下1C放电的容量保持率达到常温下的81%。未包覆和仅用Co(OH)2包覆的球形Ni(OH)2制成的AA型电池,在60℃下1C放电的容量保持率分别只有46%和48%。通过循环伏安测试表明,利用表面包覆的方法可以增大正极材料Ni(OH)2在高温下的氧化电位、析氧电位和两者之间的电位差,从而提高了材料在高温下的电化学性能。  相似文献   

3.
非晶纳米氢氧化镍电极材料的制备及其控制条件   总被引:8,自引:0,他引:8  
采用快速冷冻沉淀法制备了非晶态纳米氢氧化镍粉体材料。讨论了反应体系的pH值、温度和表面活性剂等因素对粉体特性的影响。结果表明,当选择表面活性剂为Tween80,反应体系的pH=11-12,T=55℃,反应时间为1h时,所制备的非晶氢氧化镍粉体粒度为30nm左右,形貌近似球形。将样品粉体作为MH-Ni电池正极活性材料,其充电电压低,电化学极化阻抗小,放电平台高(1.258V),且平稳时间较长,放电比容量达349.85mAh/g。  相似文献   

4.
采用快速冷冻沉淀法制备添加PO43-和 Mg2+阴阳离子的非晶态氢氧化镍电极活性粉体材料,对其微结构和电化学性能进行研究。结果表明:添加5%PO43-(质量分数,下同)和2% Mg2+的非晶态样品粉体形貌为无规则,微结构无序性强,含有较多的结晶水,达31%。其作为MH-Ni电池正极活性材料,放电容量为347 mAh·g-1,中值电压达1.29 V,放电倍率对样品电极的放电比容量影响不大;充放电循环50次,容量衰减为3.5%,具有较好的稳定性;质子扩散系数达9.22×10-10 cm2·s-1,并具有较小电化学阻抗。与β-Ni(OH)2材料相比,其电化学性能明显提高。  相似文献   

5.
稀土Y掺杂非晶态纳米Ni(OH)2的结构及其电化学性能研究   总被引:2,自引:1,他引:1  
以Tween-80/n-C4H9OH/c-C6H12/NiSO4水溶液体系,采用微乳液快速冷冻沉淀法制备出稀土Y掺杂非晶态纳米级氢氧化镍粉体材料.采用XRD、SAED、SEM、TEM、EDS、Raman、IR,粒度分析和比表面等测试方法对所制备的粉体进行了结构形态表征,并对其充放电性能和交流阻抗谱进行测试.结果发现,适量稀土元素Y的掺入使非晶态纳米氢氧化镍的结构缺陷增多、无序性增强,平均粒度减小、比表面积增大,有利于降低其溶液电阻、电荷转移电阻和Warburg阻抗,从而提高其放电比容量.样品作为MH-Ni电池正极材料以0.2 C充放电,终止电压为1.0 V,当掺杂Y的质量分数为4%时,放电比容量达到333.3 mAh/g.  相似文献   

6.
采用微乳液化学共沉淀法制备出稀土Y(Ⅲ)与Mg(Ⅱ)复合掺杂非晶态氢氧化镍粉体材料。应用XRD、SAED、SEM及Raman测试样品材料的表观形貌及微结构特征,同时研究样品材料电极的电化学性能。结果表明:复合掺杂Y(Ⅲ)/Mg(Ⅱ)的非晶态氢氧化镍粉体微结构缺陷较多,无序性增强,呈不规则的类球形;材料粉体作为MH-Ni电池正极活性物质,在充放电过程中电化学阻抗较小,在以0.2C充放电,终止电压为1.0V的制度下,其放电比容量高达到364.75mAh·g-1,同时放电中值电压较高并稳定于1.276V,1C下其放电比容量可达348.82mAh·g-1,充放电循环50次容量保持率为91.87%,显示出良好的较大倍率放电性能和循环可逆性能。  相似文献   

7.
在氢氧化镍表面包覆氢氧化镱和氢氧化钴并用XRD、XPS、SEM和恒电流充放电技术进行表征。结果表明:β-Ni(OH)2为六方晶型,Co的存在形式主要为Co2+及有少量的Co3+。样品表面Co和Ni原子比大于8:1。65℃下0.2、1和3C恒电流充放电时,表面包覆2%Yb(OH)3的样品放电容量和活性物质利用率最大。65℃时经过30次充放电循环后,在不同的充放电倍率下,表面包覆不同量Yb(OH)3的氢氧化镍的放电循环稳定性和放电容量随着Yb(OH)3含量的增加而增大。  相似文献   

8.
在氢氧化镍表面包覆氢氧化镱和氢氧化钴并用XRD、XPS、SEM和恒电流充放电技术进行表征。结果表明:β-Ni(OH)2为六方晶型,Co的存在形式主要为Co2+及有少量的Co3+。样品表面Co和Ni原子比大于8:1。65℃下0.2、1和3C恒电流充放电时,表面包覆2%Yb(OH)3的样品放电容量和活性物质利用率最大。65℃时经过30次充放电循环后,在不同的充放电倍率下,表面包覆不同量Yb(OH)3的氢氧化镍的放电循环稳定性和放电容量随着Yb(OH)3含量的增加而增大。  相似文献   

9.
采用球形Ni(OH)2和LiNO3、CoO、Al(OH)3为原料,在空气气氛条件下700℃恒温8h,合成了锂离子电池正极材料LiNixCo1-xO2和LiNi0.75Al0.25O2。X射线衍射分析表明合成的材料粉末结晶良好,具有规整的α-NaFeO2层状结构;SEM分析表明粉末颗粒呈球形,粒径约为7μm。充放电测试表明:合成的LiNixCo1-xO2正极材料的充电比容量为160mAh/g,放电比容量为152mAh/g;LiNi0.75Al0.25O2正极材料的充电比容量为140mAh/g,放电比容量为129mAh/g;这两种正极材料具有优良的电化学性能。  相似文献   

10.
电沉积法制备掺杂钴的氢氧化镍电极材料及其容量特性   总被引:6,自引:1,他引:5  
采用电化学共沉积技术在泡沫镍基体上制备了掺杂氢氧化钴的氢氧化镍电极,研究了其容量特性。结果表明:0.5mol/LNi(NO3)2和0.25mol/LCo(NO3)2溶液以体积比Ni(NO3)2:Co(NO3)2=8.5:1.5混合作为沉积溶液时,所得掺钴的氢氧化镍电极性能最佳。XRD和SEM分析表明:所得产物为掺杂α-Co(OH)2的α-Ni(OH)2,晶粒尺寸为2-10nm,其粒子形貌呈球状,粒径在0.5~2μm之间。将其组装成C/Ni(OH)2模拟超级电容器,在充放电电流为5mA的条件下,循环40次后比电容为460F/g,其比电容数值随循环次数增加逐渐趋于稳定。  相似文献   

11.
Electrochemical performance of multiphase nickel hydroxide   总被引:1,自引:0,他引:1  
The high density nano-crystalline multiphase nickel hydroxide containing at least three doping elements was synthesized and its electrochemical characteristics were studied. The electrochemical behavior of the high density spherical multiphases α-Ni(OH)2 were also investigated. The results show that the structure of the material is a mixed phase of α-Ni(OH)2 and β-Ni(OH)2, which has a the same stabilized structure as α-Ni(OH)2 during long-term charge/discharge process. High density spherical multiphases α-Ni(OH)2 have a much better redox reversibility, a much lower oxidation potential of Ni( Ⅱ) than the corresponding oxidation state in the case of β-Ni(OH)2, and a much higher reduction potential. They exchange one electron during electrochemical reaction and have a higher proton diffusion coefficient. The mechanism of the electrode reaction is proton diffusion, and the proton diffusion coefficient is 5.67×10^-10 cm^2/s. Moreover, they reveal a higher discharge capacity than β-Ni(OH)2/β-NiOOH because they exchange one electron per nickel atom during charge/discharge process.  相似文献   

12.
采用超声波辅助沉淀法制备Cu单掺杂和Cu/Al复合掺杂的纳米Ni(OH)2样品,测试样品的晶相结构、粒径、形貌、振实密度及电化学性能。结果表明,样品均具有α相结构且其平均粒度的分布范围窄,Cu单掺杂的纳米Ni(OH)2呈现不规则形态,而Cu/Al复合掺杂的纳米Ni(OH)2呈准球状且具有更大的振实密度。将纳米样品以8%的比例掺入到商业用微米级球形镍中制成混合电极。充放电和循环伏安测试结果表明,Cu/Al复合掺杂纳米Ni(OH)2的电化学性能优于Cu单掺杂的纳米Ni(OH)2的,前者的放电比容量最高达到330mA·h/g(0.2C),比Cu单掺杂样品的高12mA·h/g,比纯球镍电极的高91mA·h/g。此外,Cu/Al复合掺杂纳米样品的质子扩散系数比Cu单掺杂样品的高52.3%。  相似文献   

13.
β-NiOOH的臭氧氧化法合成、表征及电化学性能   总被引:1,自引:0,他引:1  
利用臭氧在常温下氧化球形β-Ni(OH)2,制得β-NiOOH。通过X射线衍射、光电子能谱分析、扫描电镜等对样品结构进行表征。采用循环伏安及恒流放电实验研究所制β-NiOOH样品的电化学性能。结果表明:样品主要成分是平均粒径为13μm的球形β-NiOOH颗粒,不含γ-NiOOH。在样品以0.5C的放电倍率放电至0.5 V时,其放电比容量为200.4 mA·h/g,并具有较平坦的放电曲线。采用本方法所制样品的电极可逆性优于采用其他方法制备的β-NiOOH的可逆性,且未额外引入杂质元素,是一种制备纯净NiOOH的方法。  相似文献   

14.
1 INTRODUCTIONDue to the high cost of LiCoO2,a commonlyused cathode material in commercial rechargeablelithium-ion batteries , much efforts have been madeto develop cheaper cathode materials than LiCoO2,Li Ni O2and Li MnO2have been studied extensivelyas possible alternatives to LiCoO2[1 4 ]. Stoichio-metric Li Ni O2is knownto be difficult to synthesizeandits multi-phase reaction during electrochemicalcyclingleads to structural degradation,andlayeredLi MnO2has a significant drawback…  相似文献   

15.
Ti substituted α-Ni(OH)2 (c=2.121 nm, a =0. 307 nm) with perfect high-temperature performance was prepared by the co-precipitation method. The effects of Ti addition on the structure and the electrochemical properties were investigated. The results indicate that the substitution of Ti for Ni leads to the conversion of β-Ni(OH)2 to α-Ni(OH)2 and the increase of the inter layer distance along c-axis from 0. 464 nm to 0. 707 nm. Infrared study reveals that more anions(SO2-4 and CO2-3 ions) and H2O exist in the Ti substituted α-Ni(OH)2. The discharge capaciinhibition of the oxygen evolution at high temperature.  相似文献   

16.
Al-substituted α-Ni(OH)2 was synthesized under different reaction conditions by a homogeneous precipitation method. The effect of reaction temperature, reaction time, Ni and Al ions concentration and reagent ratio on the physico-chemical properties and electrochemical performance of Al-substituted α-Ni(OH)2 was studied. The Alsubstituted α-Ni(OH)2 samples were characterized by X-ray diffractometry(XRD), infrared spectrometry(FT-IR),inductively coupled plasma(ICP), thermogravimetry(TG) and electrochemical test. The results reveal that the physico-chemical properties and electrochemical performance of the sample are influenced strongly by the preparation conditions. Keeping reaction temperature at 100 or 104 ℃ is appropriate and the largest specific discharge capacity of creases slightly. It is appropriate that the Ni and Al ions concentration and the ratio of urea to Ni and Al ions are 0.42 mol/L and 0.75: 1, respectively.  相似文献   

17.
Nano/micro-scaled CoSnx alloy powders synthesized via carbothermal reduction at 800 ℃ with different compositions were characterized for anode materials in Li-ion battery. The synthesized spherical CoSnx particles show a loose nano/micro sized particle structural characteristic, which is apparently favorable for the improvement of cycling stability. The prepared CoSn3 alloy composite electrode exhibits a low initial irreversible capacity of ca.130 mAh·g-1 and a high specific capacity of ca.440 mAh·g-1 at constant current density of 100 mA·g-1 . The relatively large particle size is considered to be the main reason for the lower irreversible capacity of CoSn3 electrode.  相似文献   

18.
Spherical LiFePO4 and LiFePO4/C composite powders for lithium ion batteries were synthesized by a novel processing route of co-precipitation and subsequent calcinations in a nitrogen and hydrogen atmosphere. The precursors of LiFePO4, LiFePO4/C composite and the resultant products were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and the electrochemical performances were investigated by galvanostatic charge and discharge tests. The precursors composed of amorphous Fe3(PO4)2·xH2O and crystalline Li3PO4 obtained in the co-precipitation processing have a sphere-like morphology. The spherical LiFePO4 derived from the calcinations of the precursor at 700 ℃ for 10 h in a reduction atmosphere shows a discharge capacity of 119 mAh·g -1 at the C/10 rate, while the LiFePO4/C composite with 10wt.% carbon addition exhibits a discharge capacity of 140 mAh·g -1.The electrochemical performances indicate that the LiFePO4/C composite has a higher specific capacity and a more stable cycling performance than the bare olivine LiFePO4 due to the carbon addition enhancing the electronic conductivity.  相似文献   

19.
Synthesis and behavior ofAl-stabilized α-Ni(OH)2   总被引:3,自引:0,他引:3  
Nano-fibrous Al-stabilized α-Ni(OH)2 was synthesized by the urea thermal decomposition method. The grain morphology, crystal structure, thermal stability, chemical composition and electrochemical performance of the Al-stabilized α-Ni(OH)2 were investigated. It is found that the urea thermal decomposition is an appropriate way to precipitate the Al-stabilized α-Ni(OH)2 with excellent performance. The fiber cluster TEM pattern shows that the synthesized α-Ni(OH)2 powder is composed of agglomerates of much smaller primary particles. The stabilized α-Ni(OH)2 powder with a 7.67 A c-axis distance and low thermal stabilities is obtained. The FTIR spectrum shows that the materials contain absorbed water molecules, and intercalated CO32- and SO42- anions. The experimental α-Ni(OH)2 electrode exhibits excellent electrochemical redox reversibility, high special capacity, good rate discharging performance and perfect cyclic stability. Moreover, the synthesized α-Ni(OH)2 electrode also shows high discharge capacity and cyclic stability at high temperature. The electrode specific capacity remains 290 mA-h/g at 60 ℃, which is only 15 mA-h/g lower than its ambient value, and the capacity loss is 0.9 mA-h/g per charge-discharge cycle.  相似文献   

20.
In order to control the size and distribution of the high conductive Fe2P in LiFePO4/Fe2P composite, two different cooling rates (Fast: 15 ℃·min-1, Slow: 2 ℃·min-1) were employed after mechanical alloying.The discharge capacity of the fast cooled was 83 mAh·g-1 and the slow cooled 121 mAh·g-1.The particle size of the synthesized powder was examined by transmission electron microscopy and distribution of Fe2P was characterized using scanning electron microscopy (SEM).In addition, two-step heat treatment was carried out for better distribution of Fe2P.X-ray diffraction (XRD) and Rietveld refinement reveal that LiFePO4/Fe2P composite consists of 95.77% LiFePO4 and 4.33% of Fe2P.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号