首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
2.
Full‐scale fire experiments were conducted at the National Institute of Standards and Technology (NIST) to investigate tire fire interactions with the passenger compartment of a motorcoach. A single full‐scale experiment with a partially furnished interior was conducted to investigate tire fire growth within the passenger compartment and the onset of untenable conditions. A tire fire was initiated using a burner designed to imitate the frictional heating of hub and wheel metal caused by failed axle bearings, locked brakes, or dragged blown tires. Measurements of interior and exterior temperatures, interior heat flux, heat release rate, toxic gases, and visibility were performed. Standard and infrared videos and still photographs were also recorded. The results of this single experiment showed that after fire penetration into the passenger compartment, the tenability limits were reached within 8 minutes near the fire and within 11 minutes throughout the passenger compartment.  相似文献   

3.
Structures need to be designed to maintain their stability in the event of a fire. The travelling fire methodology (TFM) defines the thermal boundary condition for structural design of large compartments of fires that do not flashover, considering near field and far field regions. TFM assumes a near field temperature of 1200°C, where the flame is impinging on the ceiling without any extension and gives the temperature of the hot gases in the far field from Alpert correlations. This paper revisits the near field assumptions of the TFM and, for the first time, includes horizontal flame extension under the ceiling, which affects the heating exposure of the structural members thus their load-bearing capacity. It also formulates the thermal boundary condition in terms of heat flux rather than in terms of temperature as it is used in TFM, which allows for a more formal treatment of heat transfer. The Hasemi, Wakamatsu, and Lattimer models of heat flux from flame are investigated for the near field. The methodology is applied to an open-plan generic office compartment with a floor area of 960 m2 and 3.60 m high with concrete and with protected and unprotected steel structural members. The near field length with flame extension (fTFM) is found to be between 1.5 and 6.5 times longer than without flame extension. The duration of the exposure to peak heat flux depends on the flame length, which is 53 min for fTFM compared with 17 min for TFM, in the case of a slow 5% floor area fire. The peak heat flux is from 112 to 236 kW/m2 for the majority of fire sizes using the Wakamatsu model and from 80 to 120 kW/m2 for the Hasemi and Lattimer models, compared with 215 to 228 kW/m2 for TFM. The results show that for all cases, TFM results in higher structural temperatures compared with different fTFM models (600°C for concrete rebar and 800°C for protected steel beam), except for the Wakamatsu model that for small fires, leads to approximately 20% higher temperatures than TFM. These findings mitigate the uncertainty around the TFM near field model and confirm that it is conservative for calculation of the thermal load on structures. This study contributes to the creation of design tools for better structural fire engineering.  相似文献   

4.
Changes to the mechanical and physical properties of a glass‐reinforced resole phenolic composite due to intense radiant heat and fire are investigated. Fire testing was performed using a cone calorimeter, with the composite exposed to incident heat fluxes of 25, 50, 75 or 100 kW/m2 for 325 s and to a constant flux of 50 kW/m2 for different times up to 1800 s. The post‐fire tensile and flexural properties were determined at room temperature, and these decreased rapidly with increasing heat flux and heat exposure time due mainly to the chemical degradation of the phenolic resin matrix. The intense radiant heat did not cause any physical damage to the composite until burning began on exposure to a high heat flux. The damage consisted of cracking and combustion of the phenolic matrix at the heat‐exposed surface, but this only caused a small reduction to the mechanical properties. The implication of the findings for the use of glass‐reinforced resole phenolic composites in load‐bearing structures for marine craft and naval ships, where fire is a potential hazard, is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

5.
In this work the thermal behavior of a carbon-fiber composite impregnated with nano sized boron carbide based nanocomposites was investigated. First of all, the good dispersion and distribution of the particles in the matrix confirmed the effectiveness of the mechanical mixing. The presence of the ceramic filler did not affect the viscosity and the workability of the blends or the mechanical properties of the composites. The thermal stability of the fiber-reinforced materials was investigated by thermo-gravimetrical analysis in air and nitrogen. Their fire reaction was studied at different heat fluxes (35 and 50 kW/m2) by cone calorimeter while the flame resistance was evaluated trough residual mechanical properties after the exposition of the specimens to a direct flame of a torch (heat flux of 500 kW/m2). The experimental data suggested that boron carbide allows maintaining a residual structural integrity of the material after burning because of the chemical reactions that occur in the filler at high temperatures; the presence of boron carbide reduces the peak of heat release rate especially at higher heat-fluxes and improves the thermal stability of the composite hindering and retarding the thermal oxidation of the carbon fibers.  相似文献   

6.
A new test methodology was developed to investigate the response of walls, partitions, and in-wall systems exposed to real fires. The apparatus includes a 3.5 m long, 2.3 m wide, and 2.3 m high fire compartment within a standard sea container. A wall specimen measuring up to 1.8 m wide, 1.8 m tall, and 0.3 m deep is mounted in a steel frame at one end of the fire compartment. Fire exposures to the wall specimen evolve over time depending on the fuel load and ventilation configuration. Gas temperatures and heat flux were characterized for five different fuel and ventilation configurations. Peak exposures ranged from 30 to 75 kW/m2 for about 20 minutes. Five additional tests were conducted using a single fuel and ventilation configuration to assess the repeatability of the test methodology. It was found that a 19.3 minute growth period occurred plateauing at a ceiling temperature of 708°C for 8.4 minutes, on average. Compartment gas temperatures were found to be repeatable, having a sample standard deviation less than 32°C for symmetric data. Repeatability improved when account was taken for the rapid fire growth inflection point. The utility of the approach for studying fire performance of building elements was demonstrated.  相似文献   

7.
Results are presented from a number of fire experiments that were conducted in a room environment to study the fire characteristics of typical residential furnishings and assist in the design of a subsequent phase of a project involving fully furnished room fire experiments. The experiments were conducted in a 16‐m2 test room (with dimensions 3.8 m wide × 4.2 m long × 2.4 m high), which had a 1.5 × 1.5‐m window opening. The furnishings tested included mattresses, bed clothes, bed assemblies, upholstered seating furniture, clothing arrangements, books, plastic audio/video media and storage cases, toys, shoes, and a computer workstation setup. The smoke (gaseous products of combustion) from the room was collected using a hood system in order to measure the heat release rate (HRR) and optical density of the smoke. The test room was instrumented with load cells, heat flux gauges, thermocouples and velocity probes in order to take the following measurements: mass loss, total heat flux on gauge‐installed flush with the internal surfaces (floor, walls, and ceiling), temperatures at numerous locations, and gas velocities in the window opening. Twin‐size mattresses produced peak HRRs of approximately 3800 kW, and the maximum room temperature was approximately 980°C. The HRRs of bed assemblies of various sizes and configurations ranged from 1800 kW for a twin‐size bed to 6250 kW for a bunk bed. The maximum temperature and heat flux recorded in the experiments were 1071°C and 221 kW/m2, respectively. Upholstered chairs and sofas had HRRs ranging from 630 kW for an ottoman to 3360 kW for a two‐seat sofa. In tests with clothing, toys, shoes, books, a computer workstation, and CD/DVD media, the peak HRRs ranged from 440 kW for a bookcase to 2045 kW for toys. Furnishings containing a large proportion of rigid thermoplastic plastics, such as shoes and media cases, produced very dense smoke even at low HRRs. The effect of parameters such as bed clothes, mattress type, foundation type, bed assembly and chair size, material composition, and fuel package arrangement was evident in the results. Because the room dimensions and wall lining materials remained constant, temperatures were linearly proportional to the peak HRR (and exposure time) until the ventilation limit (approximately 4100 kW) was reached. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

8.
This paper documents the first of the two interrelated studies that were conducted to more fundamentally understand the scalability of flame heat flux, the motivation being that it has been reported that flame heat flux back to the burning surface in bench‐scale experiments is not the same as for large‐scale fires. The key aspect was the use of real scale applied heat flux up to 200kW/m2 which is well beyond that typically considered in contemporary testing. The main conclusions are that decomposition kinetics needs to be included in the study of ignition and the energy balance for steady burning is too simplistic to represent the physics occurring. An unexpected non‐linear trend is observed in the typical plotting methods currently used in fire protection engineering for ignition and mass loss flux data for several materials tested and this non‐linearity is a true material response. Using measured temperature profiles in the condensed phase shows that viewing ignition as an inert material process is inaccurate at predicting the surface temperature at higher heat fluxes. The steady burning temperature profiles appear to be invariant with applied heat flux. This possible inaccuracy was investigated by obtaining the heat of gasification via the ‘typical technique’ using the mass loss flux data and comparing it to the commonly considered ‘fundamental’ value obtained from differential scanning calorimetry measurements. This comparison suggests that the ‘typical technique’ energy balance is too simplified to represent the physics occurring for any range of applied heat flux. Observed bubbling and melting phenomena provide a possible direction of study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

9.
The materials and products used in passenger trains may not be the first ignited element, but during the fire development, these materials, especially ceiling linings and wall coverings, contribute significantly to the fire growth. The fire safety requirements in passenger trains consist mainly of bench‐scale tests, with particular focus on the sample geometry, position and fire exposition. When this information is extrapolated to real end use conditions limitations appear. In this paper, a discussion of the use of fire dynamics simulator model and heat release rate experiments in cone calorimeter (bench‐scale test) is presented in order to represent the fire development in a passenger train compartment. For the study, two fire scenarios were selected: (1) the single burning item SBI test (modified) and (2) a passenger train compartment. Initially, the limitations of the assumptions and hypothesis made when producing the model were analyzed and the research team carried out a sensitivity study of the model results considering different grid sizes. In order to validate the model, both bench‐ and full‐scale fire tests were considered based on the results provided by the European research program FIRESTARR. The limitations and uncertainties in the results demonstrate the importance of two basic factors: the incident heat flux in the cone calorimeter tests and the prescribed ignition temperature. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

10.
This study investigates the fire reaction properties of concrete made with recycled rubber aggregate (CRRA). Four different concrete compositions were prepared: a reference concrete (RC) made with natural coarse aggregate and three concrete mixes with replacement rates of 5, 10 and 15% of natural fine and coarse aggregate by recycled rubber aggregate (RRA) obtained from used tyres. Specimens of CRRA were tested in a cone calorimeter according to the test standard ASTM E1354, submitted to heat fluxes of 25, 50 and 75kW/m2. These tests evaluated the effects of incorporating RRA in the fire reaction properties of concrete, namely in the heat release rate, the time to ignition (TTI), the remaining mass, the production of smoke, and the release of carbon dioxide and carbon monoxide. Owing to the organic nature of RRA, with the exception of the carbon monoxide yield, higher replacement rates of natural aggregates by RRA and increasing heat flux led to a worse fire reaction response, particularly in terms of TTI, heat release rate and smoke production. Results of these experiments were then used to estimate the European fire reaction classes of each concrete composition, using a flame spread model. All CRRA compositions tested were provisionally rated as class A2 or B and such ratings allowed defining the field of application of each solution under analysis, according to building code requirements. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

12.
Abstract

A highly concentrated aqueous solution of sodium polyborate (SPB) was used to treat laminated Japan cedar (Cryptomeria japonica) in order to first develop a fire resistant laminated wood. After the pressure-impregnation of a water borne solution containing 9.78 mol/L of boron, the fire properties were evaluated by cone calorimeter (CCM) and weight loss (WL). The resorcinol formaldehyde resin (RF) laminated wood did not fracture and the adhesive interfaces kept the pieces together even after heating at 750°C for 20 min or with the CCM test using the heat flux of 50 kW/m2 for 20 min. Heat emission for 20 min in the CCM test below 8 MJ/m2 was achieved by a WPG of 53% or more.  相似文献   

13.
Passenger vehicle fires present a significant fire hazard in enclosed car parks. Accordingly, this hazard is often used as a design fire scenario for the application of fire protection systems. Specific fire protection standards, like NFPA 88A:2019 and NFPA 502:2020 in the United States (US) or BS 7346-7:2013, NBN 21-208-2:2014, VDI 6019-1:2006, NEN 6098:2010 and ITB 493:2015 in Europe, provide varying requirements for car park fire protection. Car parks fire strategies, especially when smoke control systems are used, often make use of performance-based methods, in which fire growth (ie, heat release rate [HRR]) plays a fundamental role. The chosen HRR can influence the specification of car park construction and on smoke control system calculations. This article presents a review of 44 full-scale car fire tests together with Polish and British passenger car fire statistics from the last 8 years. Based on the collected data and the averaged tests, HRR values provided in this article could assist local authorities and stakeholders determine optimal fire safety design criteria for car parks.  相似文献   

14.
This paper examines the standards for fire safety in transport systems and in particular the test method for the flammability of materials within passenger compartments of motor vehicles. The paper compares data from ignition tests conducted in the cone calorimeter and the FIST apparatus with tests conducted using the FMVSS 302 horizontal flame spread apparatus. Ten materials were selected as representative of those used as seat coverings of private and commercial passenger vehicles. The time to ignition of new and used materials subject to exposure heat fluxes between 20 kW/m2 and 40 kW/m2 was measured. The results from the ignition tests were analysed using thermally thick and thermally thin theoretical models. The critical heat flux for sustained piloted ignition was determined from the time to ignition data using the thermally thin approach. Derived ignition temperatures from both the thermally thick and thermally thin methods were compared with measurements using a thermocouple attached to the back surface of materials in selected tests. The flame spread rates in the FMVSS 302 apparatus were determined and a comparison was made between the performance of the materials in the flame spread apparatus, the cone calorimeter and the FIST. The results suggests that a critical heat flux criterion could be used to provide an equivalent pass/fail performance requirement to that specified by the horizontal flame spread test although further testing is needed to support this. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

15.
A vinyl phosphonic acid based flame retardant coating has been applied on the surface of a glass-fibre reinforced epoxy (GRE) composite substrate using a UV polymerisation technique. On exposure to heat the poly (vinyl phosphonic acid) (PVPA) coating thus obtained, intumesces and acts as a thermal insulator, providing active fire protection to the composite structure. Samples with ∼300 and 500 μm thick coatings were prepared. The fire performance of the coated GRE composite was studied by cone calorimetry at 35 and 50 kW/m2 heat fluxes. While the sample with ∼500 μm thick coating did not ignite at both heat fluxes, the one with the ∼300 μm thick coating ignited at 50 kW/m2, however the time-to-ignition was delayed from 60 s in the uncoated sample to 195 s and the peak heat release rate reduced from 572 kW/m2 to 86 kW/m2. The coatings did not peel off when subjected to a tape pull test and resisted cracking/debonding during an impact drop test of up to 5 J energy. However, the coatings are hydrophilic, showing significant mass loss in a water soak test. The improvement of the hydrophobicity of these coatings is a focus of our future research.  相似文献   

16.
The charring of wood studs has been studied in the cone calorimeter at constant heat flux 50 kW/m2 and compared to data from full-scale furnace wall tests. The wood studs were unprotected or protected by gypsum plasterboards on the exposed side. Similar charring depths were found and the data analysed mainly in terms of fire exposure. A simple small-scale technique was developed to measure the heat transfer through protective boards and the charring depth of wood studs. These properties are essential for the load bearing capacity of wood frame structures. © 1998 John Wiley & Sons, Ltd.  相似文献   

17.
The fire structural response of sandwich composite laminates incorporating bio‐derived constituents subjected to a turbulent flaming fire was investigated. Fire structural tests were conducted on thermal insulated sandwich composites incorporating a thin surface‐bonded non‐woven glass fibre tissue impregnated with char‐forming fire retardant, ammonium polyphosphate. The sandwich composite laminates were loaded in compression at 10%, 15% or 20% of the ultimate compressive strength while simultaneously subjected to turbulent flames imposing an incident heat flux of 35 kW/m2. Generally, the failure time increased with the reduced applied compressive load. The thermal insulated sandwich composite laminates had considerably improved fire resistance in comparison to their unmodified counterparts. The unmodified composites failed 96 s earlier than the thermal insulated specimens when the compression load was 10% of the ultimate compressive strength. The presence of ammonium polyphosphate at the heat‐exposed surface promoted the formation of a consolidated char layer, which slowed down heat conduction into composite laminate substrate. The fire reaction parameters measured via the cone calorimeter provided insights into the thermal response hence fire structural survivability of sandwich composite laminates. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this work, we investigated the thermal behaviour of a carbon‐fibre composite impregnated with nano‐alumina‐based nanocomposites. First of all, we demonstrated that it is possible to obtain good dispersion and distribution of nanoparticles by mechanical mixing. In all the studied filler percentages, the presence of the ceramic filler did not affect the processability of the blends and the mechanical properties of the composites. First, the thermal stability of the nanocomposites was investigated by thermogravimetric analysis (TGA). Then, the fire reaction of the fibre‐reinforced composites was studied at different heat fluxes, by TGA, cone calorimeter and exposure to a direct flame. In presence of an oxidizing hyperthermal environment, the experimental data suggested the role of ceramic particles as anti‐oxidizer agent for the char and the carbon fibres. Moreover, the use of alumina nanoparticles allowed a slight reduction of heat release rate. Particularly at a heat flux of 35 kW/m2, the burnt material containing the higher quantity of nano‐alumina maintained a residual structural integrity because of the higher presence of char that bound together the fibres. To estimate the integrity of the composites after exposure to a direct flame (heat flux 500 kW/m2), mechanical tests were carried out on the burnt specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
The hazards for passengers during vehicle fires result from the increasing temperature and the emitted smoke gases. A fire was set on a car to investigate the development of temperature and of gaseous fire products in the passenger compartment. The study was based on a full‐scale test with a reconstructed scene of a serious car fire. The aim of this work was to identify the conditions for self‐rescuing of passengers during a car fire. A dummy, equipped with several thermocouples, was placed on the driver's seat. Also, the smoke gases were continuously collected through a removable probe sensor corresponding to the nose of the dummy in the passenger compartment and analyzed using Fourier transform infrared spectroscopy. Additionally, several car components were investigated in the smoke density chamber (smoke emission and smoke gas composition). It was found that the toxic gases already reached hazardous levels by 5 min, while the temperatures at the dummy were at that time less than 80 °C. The toxicity of smoke gases was assessed using the fractional effective dose concept. The various experimentally parameters (temperature and smoke gas composition) were implemented into numerical simulations with fire dynamics simulator. Both the experimental data and the numerical simulations are presented and discussed. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
A pool fire characterized by high temperature and heat radiation, is a common accident in chemical industry. The important combustion characteristic parameters are the heat radiation flux, the burning rate, the flame height, etc., but the most significant one is the heat radiation flux. The calculation model of the pool fire has an important role to assess the accident. There are three types of widely used pool fire models, the Shokri and Beyler model, the Mudan model, and the point source model. The models are used to calculate the combustion parameters of three different kinds of oils in tanks of different scales. The predictions of three models are compared with the simulation results. The analysis shows that the point source model has a large error for pool fires with the diameter greater than 10 m and the thermal radiation flux smaller than 5 kW/m2, and the model is more applicable to heavy crude pool fires. The scope of application of the Mudan model is broader, and this model ensures higher accuracy if the thermal radiation flux is smaller than 5 kW/m2. The Shokri and Beyler model is more suitable for the case where the pool fire diameter is greater than 40 m and the thermal radiation flux is above 5 kW/m2, and the results for the light crude pool fire based on this model are more reasonable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号