首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ziqing Yu  Aixi Zhou 《火与材料》2014,38(1):100-110
This study evaluates the effect of flame heat flux on the prediction of thermal response and fire properties of a char‐forming composite material. A simplified two‐layer flame model was developed and incorporated into a heat transfer thermal model to predict the thermal response and fire reaction characteristics of a burning material. A typical char‐forming material, E‐glass reinforced polyester composite, was used in the study. A cone calorimeter was used to measure the fire reaction characteristics of the composite. The flame heat flux in a cone calorimeter test setup was estimated using the simplified flame model. Thermal response and fire property predictions with and without the effect of flame heat flux were compared with experimental data obtained from the cone calorimeter tests. Results showed that the average flame heat flux of the composite in a cone calorimeter was 19.1 ± 6 kW/m² from model predictions. The flame had a significant effect on the thermal response and fire properties of the composite around the first heat release peak but the effect decreased rapidly afterwards. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
In this work, the influences of 4ZnO·B2O3·H2O zinc borate (ZB) whisker based intumescent flame retardant (IFR) containing ammonium polyphosphate and dipentaerythritol on the mechanical, flame retardant and smoke suppression properties of polypropylene (PP) composites were characterized by the universal testing machine, UL-94, limiting oxygen index (LOI), and cone calorimeter tests, respectively. The results indicate that only 1 phr of ZB could effectively improve the LOI value and slow down the burning rate of PP composite. The peak heat release rate, average of HRR, total heat release, peak smoke production rate, and total smoke production values are all decreased from 413.8 kW/m2, 166.3 kW/m2, 82.3 MJ/m2, 0.0995 m2/s, and 17.9 m2 for PPc/20IFR composite to 267.8 kW/m2, 128.3 kW/m2, 66.8 MJ/m2, 0.0478 m2/s, and 12.6 m2 for PPc/20IFR/1ZB composite, respectively. The scanning electron microscopy images, energy dispersive spectrometry, and Raman spectra of char residue reveal that ZB is helpful to form a compact and graphitized intumescent char residue so that the heat diffusion and oxygen transmission are greatly hindered. The thermogravimetry analysis-fourier transform infrared spectroscopy (TGA-FTIR) results show that less combustible volatiles and more H2O vapor are generated with the appearance of ZB. Hence, the combustion mechanism in gas phase is suppressed.  相似文献   

3.
In the fire safety design of parking lots and buildings, estimating the possibility of fire spreading to surrounding combustibles, such as neighboring buildings and cars, is essential. The ignition possibility to surrounding combustibles can be predicted from the heat flux from a burning car to the combustibles. In this study, we conducted 2 full‐scale car fire experiments using minivan passenger cars and measured the heat fluxes to their surroundings. The cars were ignited at the rear bumper with 80 g of alcohol gel fuel. The windows were closed. Heat flux gauges were placed around the car to measure the heat flux in various directions. Cedar boards were placed next to the gauges, and burn damage to the boards was observed. When the windows shattered in succession, combustion in the passenger compartment became larger. At a distance of 50 cm from the burning car, the heat flux was greater than 40 kW/m2, and most of the cedar boards were completely burned. At a distance of 1 m, the heat flux was 10 to 20 kW/m2, and some of the cedar boards were burned. We devised a method for modeling the shape and temperature of flames in the burning cars. Furthermore, we propose a method for calculating heat fluxes in the lateral direction of the burning minivan passenger car, and we compared the calculated and measured heat fluxes as a means of verifying the proposed method. The shape of flame in the burning car was approximated as a rectangular prism to calculate the heat flux. The calculation results were in good agreement with the experimental results. The proposed method is expected to be useful for fire safety engineering.  相似文献   

4.
In this work the thermal behavior of a carbon-fiber composite impregnated with nano sized boron carbide based nanocomposites was investigated. First of all, the good dispersion and distribution of the particles in the matrix confirmed the effectiveness of the mechanical mixing. The presence of the ceramic filler did not affect the viscosity and the workability of the blends or the mechanical properties of the composites. The thermal stability of the fiber-reinforced materials was investigated by thermo-gravimetrical analysis in air and nitrogen. Their fire reaction was studied at different heat fluxes (35 and 50 kW/m2) by cone calorimeter while the flame resistance was evaluated trough residual mechanical properties after the exposition of the specimens to a direct flame of a torch (heat flux of 500 kW/m2). The experimental data suggested that boron carbide allows maintaining a residual structural integrity of the material after burning because of the chemical reactions that occur in the filler at high temperatures; the presence of boron carbide reduces the peak of heat release rate especially at higher heat-fluxes and improves the thermal stability of the composite hindering and retarding the thermal oxidation of the carbon fibers.  相似文献   

5.
The effect of heat flux levels on burning behavior and heat transmission properties of hybrid fabrics and composites has been investigated using cone calorimeter and heat transmission techniques. The hybrid fabric structures woven out of E‐glass (warp) and polyether ether ketone (PEEK) (weft) and E‐glass (warp) and polyester (weft) have been studied at high heat flux levels keeping in view the flame retardant requirements of structural composites. The performance of the glass–PEEK fabric even at high heat flux levels of 75 kW/m2 was comparable with the performance of glass–polyester fabric evaluated at 50 kW/m2. The results further demonstrate that glass–PEEK hybrid fabrics exhibit low peak heat release rate, low heat release rate, low heat of combustion, suggesting an excellent combination of materials and fall under the low‐risk category and are comparable with the performance of carbon fiber‐epoxy‐based systems. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

6.
Two test methods for measuring the heat release rate, HRR have been compared on fabric composites used for aircraft interior materials as side‐wall panels. These methods are based on the principles of direct measurement of the convective and radiant heat by thermopiles using an Ohio State University (OSU) calorimeter, and oxygen consumption using a cone calorimeter. It has been observed when tested by standard procedures, cone results at 35 kW/m2 incident heat flux do not correlate with OSU results at the same heat flux. This is because in the cone calorimeter, the sample is mounted horizontally whereas the OSU calorimetric method requires vertical sampling with exposure to a vertical radiant panel. A further difference between the two techniques is the ignition source—in the cone it is spark ignition, whereas in the OSU it is flame ignition; hence, samples in the OSU calorimeter ignite more easily compared to those in the cone under the same incident heat fluxes. However, in this paper we demonstrate that cone calorimetric exposure at 50 kW/m2 heat flux gives similar peak heat release results as the 35 kW/m2 heat flux of OSU calorimeter, but significantly different average and total heat release values over a 2 min period. The performance differences associated with these two techniques are also discussed. Moreover, the effects of structure, i.e. type of fibres used in warp/weft direction and design of fabric are also analysed with respect to heat release behaviour and their correlation discussed. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

7.
Flame spread experiments were conducted in an ASTM E 1321 lateral ignition and flame transport (LIFT) apparatus and a reduced scale ignition and flame spread test (RIFT) adaptation of the cone calorimeter. Wood‐based products were tested and a flame spread model was applied to the results to obtain the flame spread parameter and the minimum heat flux required for flame spread. The materials used were plywood, medium density fibreboard, hardboard, two‐particle board products, Melamine (Melteca) covered products with two types of wood substrate along with New Zealand grown Rimu, Beech, Macrocarpa and Radiata Pine. The RIFT gave comparable results to the LIFT for several of the materials investigated. There appeared to be an effective limit on suitable materials that can be successfully tested in the RIFT to those that have a minimum flux for flame spread of less than 7kW/m2. This limitation was due to the rapid decay of the heat flux profile along the sample and the lower resolution dictated by the smaller size of the RIFT apparatus. It was found that the limit on the minimum heat flux for flame spread was approximately equivalent to a minimum ignition flux of 18kW/m2. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

8.
A Controlled-atomosphere cone calorimeter was used to investigate the burning of pure and flame retardant-treated cotton fabrics. The condensed-phase flame retardants used were Morguard (containing ammonium dihydrogen phosphate and diammonium hydrogen phoisphate) and Nochar (containing ammonium sulfate and a sodium salt). The fabrics were tested at 25 kW m?2 incident heat flux in environments containing 15–30% oxygen. The flame retardants increased the time to ignition, residue yield, and CO and CO2 yields. The flame retardants decreased the peak and average mass loss rates, the peak and average heat release rates, the effective heat of combustion at peak heat release rate, and the propensity to flashover. The effect of oxygen concentration on the burning of pure and flame retardant-treated cotton fabrics has also been investigated. The flame retardants had better performance when the treated fabrics burned in the lower oxyge concentrations. The result of this study indicate that the controlled-atmosphere cone calorimeter is a good tool for studying the effect of flame retardant and oxygen concentration on the burning of materials.  相似文献   

9.
Wheat straw (WS) has numerous advantages compared with traditional bioadditives such as starch and lignin. So in this work, based on WS and silica microencapsulated ammonium polyphosphate, flame retardant polypropylene/wheat straw (WSP) composites were prepared by melted blend method. Flame retardant and thermal properties of WSP composites have been investigated. The results of cone calorimeter show that peaks of heat release rate and total heat release of the flame retardant WSP composite decrease substantially compared with those of pure polypropylene. The peak of heat release rate value of the flame retardant WSP composite decreases from 1290.5 to 247.9 kW/m2, and the total heat release value decreases from 119.4 to 46.3 MJ/m2. Meanwhile, thermal degradation and gas products of the flame retardant WSP composite were monitored by thermogravimetric analysis and thermogravimetric analysis‐infrared spectrometry. The result of thermal analysis shows that the flame retardant WSP composite has a high thermal stability and has a 30.0 wt% residual char at 600°C. From this work, we hope to provide a method to prepare flame retardant polymer composites with a biodegradable natural material‐WS.  相似文献   

10.
Results are presented from 2 series of ad hoc experimental programmes using the cone calorimeter to investigate the burning behaviour of charring closed‐cell polymeric insulation materials, specifically polyisocyanurate (PIR) and phenolic (PF) foams. These insulation materials are widely used in the construction industry due to their relatively low thermal conductivity. However, they are combustible in nature; therefore, their fire performance needs to be carefully studied, and characterisation of their thermal degradation and burning behaviour is required in support of performance‐based approaches for fire safety design. The first series of experiments was used to examine the flaming and smouldering of the char from PIR and PF. The peak heat release rate per unit area was within the range of 120 to 170 kW/m2 for PIR and 80 to 140 kW/m2 for PF. The effective heat of combustion during flaming was within the range of 13 to 16 kJ/g for PIR and around 16 kJ/g for PF, while the CO/CO2 ratio was within 0.05 to 0.10 for PIR and 0.025 to 0.05 for PF. The second experimental programme served to map the thermal degradation processes of pyrolysis and oxidation in relation to temperature measurements within the solid phase under constant levels of nominal irradiation. Both programmes showed that surface regression due to smouldering was more significant for PF than PIR under the same heat exposure conditions, essentially because of the different degree of overlap in pyrolysis and oxidation reactions. The smouldering of the char was found to self‐extinguish after removal of the external heat source.  相似文献   

11.
This paper documents the first of the two interrelated studies that were conducted to more fundamentally understand the scalability of flame heat flux, the motivation being that it has been reported that flame heat flux back to the burning surface in bench‐scale experiments is not the same as for large‐scale fires. The key aspect was the use of real scale applied heat flux up to 200kW/m2 which is well beyond that typically considered in contemporary testing. The main conclusions are that decomposition kinetics needs to be included in the study of ignition and the energy balance for steady burning is too simplistic to represent the physics occurring. An unexpected non‐linear trend is observed in the typical plotting methods currently used in fire protection engineering for ignition and mass loss flux data for several materials tested and this non‐linearity is a true material response. Using measured temperature profiles in the condensed phase shows that viewing ignition as an inert material process is inaccurate at predicting the surface temperature at higher heat fluxes. The steady burning temperature profiles appear to be invariant with applied heat flux. This possible inaccuracy was investigated by obtaining the heat of gasification via the ‘typical technique’ using the mass loss flux data and comparing it to the commonly considered ‘fundamental’ value obtained from differential scanning calorimetry measurements. This comparison suggests that the ‘typical technique’ energy balance is too simplified to represent the physics occurring for any range of applied heat flux. Observed bubbling and melting phenomena provide a possible direction of study. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
S. Eibl 《火与材料》2017,41(7):808-816
Fundamental aspects for the thermal decomposition and formation of respirable fragments of carbon fibers are investigated to assess the health hazard of carbon fiber reinforced plastic material after a fire. The influence of temperature (600°C‐900°C)/heat flux (30‐80 kW/m2), time of thermal load (up to 20 minutes), and oxygen exposure is analyzed by means of mass loss and fiber diameter of intermediate modulus and high tenacity fibers with initial diameters of 5 to 7 μm. Various types and concentrations of flame retardants were tested with respect to fiber protection. Epoxy‐based composite specimens (RTM6/G0939) additionally containing aluminum or magnesium hydroxide and/or zinc borate (1‐25 wt% per resin) were analyzed by cone calorimetry. Carbon fiber decomposition increases with combustion/irradiation time and temperature/heat flux, after a threshold temperature (ca 600°C) is exceeded. Critical fiber diameters below 3 μm are reached within minutes and are predominantly observed close to the panel surface in contact with air. Effective fiber protection is achieved by flame retardants acting beyond 600°C, forming thermally resistant layers such as zinc borate. A new field of research is opened identifying flame retardants, which protect carbon fibers in carbon fiber reinforced plastic.  相似文献   

13.
The ignition, flaming and smoldering combustion of low‐density polyimide foam have been studied using a cone calorimeter. Low‐density polyimide foam exhibits a high ignition resistance. The minimum heat flux for the ignition of flaming combustion ranges from 48 to 54 kW/m2. This minimum heat flux also indicates the heat flux for transition from smoldering to flaming combustion. The flaming combustion results show that the heat release rate of low‐density polyimide foam is very low even at a high incident heat flux of 75 kW/m2. The smoldering combustion results show that the smoldering of low‐density polyimide foam becomes significant when the incident heat flux is greater than 30 kW/m2. The smoldering combustion of low‐density polyimide foam cannot be self‐sustaining when the external heat source is removed. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
A one‐dimensional thermal flame spread model was applied to predict the rate of heat release in the single burning item (SBI) test on the basis of the cone calorimeter data. The input parameters were selected according to the features of the SBI test and using particle board as a model tuning material. The features of the measured and calculated rate of heat release curves were compared for a series of 33 building products. The fire growth rate (FIGRA) indices were calculated to predict the classification in the forthcoming Euroclass system. The model gave correct classification for 90% of the products studied. An essential feature of the model is that only one cone calorimeter test at the exposure level of 50 kW m?2 is needed. The model, therefore, provides a practical tool for product development and quality control. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

15.
Seven halogen‐free flame retardant (FR) compounds were evaluated using pyrolysis combustion flow calorimetry (PCFC) and cone calorimetry. Performance of wires coated with the compounds was evaluated using industry standard flame tests. The results suggest that time to peak heat release rate (PHRR) and total heat released (THR) in cone calorimetry (and THR and temperature at PHRR in PCFC) be given more attention in FR compound evaluation. Results were analyzed using flame spread theory. As predicted, the lateral flame spread velocity was independent of PHRR and heat release capacity. However, no angular dependence of flame spread velocity was observed. Thus, the thermal theory of ignition and flame spread, which assumes that ignition at the flame front occurs at a particular flame and ignition temperature, provides little insight into the performance of the compounds. However, results are consistent with a heat release rate greater than about 66kW/m2 during flame propagation for sustained ignition of insulated wires containing mineral fillers, in agreement with a critical heat release rate criterion for burning. Mineral fillers can reduce heat release rate below the threshold value by lowering the flaming combustion efficiency and fuel content. A rapid screening procedure using PCFC is suggested by logistic regression of the binary (burn/no‐burn) results. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

16.
Structures need to be designed to maintain their stability in the event of a fire. The travelling fire methodology (TFM) defines the thermal boundary condition for structural design of large compartments of fires that do not flashover, considering near field and far field regions. TFM assumes a near field temperature of 1200°C, where the flame is impinging on the ceiling without any extension and gives the temperature of the hot gases in the far field from Alpert correlations. This paper revisits the near field assumptions of the TFM and, for the first time, includes horizontal flame extension under the ceiling, which affects the heating exposure of the structural members thus their load-bearing capacity. It also formulates the thermal boundary condition in terms of heat flux rather than in terms of temperature as it is used in TFM, which allows for a more formal treatment of heat transfer. The Hasemi, Wakamatsu, and Lattimer models of heat flux from flame are investigated for the near field. The methodology is applied to an open-plan generic office compartment with a floor area of 960 m2 and 3.60 m high with concrete and with protected and unprotected steel structural members. The near field length with flame extension (fTFM) is found to be between 1.5 and 6.5 times longer than without flame extension. The duration of the exposure to peak heat flux depends on the flame length, which is 53 min for fTFM compared with 17 min for TFM, in the case of a slow 5% floor area fire. The peak heat flux is from 112 to 236 kW/m2 for the majority of fire sizes using the Wakamatsu model and from 80 to 120 kW/m2 for the Hasemi and Lattimer models, compared with 215 to 228 kW/m2 for TFM. The results show that for all cases, TFM results in higher structural temperatures compared with different fTFM models (600°C for concrete rebar and 800°C for protected steel beam), except for the Wakamatsu model that for small fires, leads to approximately 20% higher temperatures than TFM. These findings mitigate the uncertainty around the TFM near field model and confirm that it is conservative for calculation of the thermal load on structures. This study contributes to the creation of design tools for better structural fire engineering.  相似文献   

17.
Changes to the mechanical and physical properties of a glass‐reinforced resole phenolic composite due to intense radiant heat and fire are investigated. Fire testing was performed using a cone calorimeter, with the composite exposed to incident heat fluxes of 25, 50, 75 or 100 kW/m2 for 325 s and to a constant flux of 50 kW/m2 for different times up to 1800 s. The post‐fire tensile and flexural properties were determined at room temperature, and these decreased rapidly with increasing heat flux and heat exposure time due mainly to the chemical degradation of the phenolic resin matrix. The intense radiant heat did not cause any physical damage to the composite until burning began on exposure to a high heat flux. The damage consisted of cracking and combustion of the phenolic matrix at the heat‐exposed surface, but this only caused a small reduction to the mechanical properties. The implication of the findings for the use of glass‐reinforced resole phenolic composites in load‐bearing structures for marine craft and naval ships, where fire is a potential hazard, is discussed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

18.
Two types of microcapsule flame retardants are prepared by coating ammonium polyphosphate (APP) and aluminum diethylphosphinate (ADP) with epoxy resin (EP) as the shell via in situ polymerization, and blended with high density polyethylene (HDPE)/graphene nanoplatelets (GNPs) composites to obtain flame‐retardant HDPE materials. Fourier transform infrared spectroscopy, scanning electron microscopy (SEM), and water contact angle results confirm the formation of core–shell structures of EP@APP and EP@ADP. The limiting oxygen index (LOI), vertical burning test (UL‐94), cone calorimetry, and Raman spectroscopy are employed to characterize the HDPE/GNPs composites filled with EP@APP and EP@ADP core–shell materials. A UL94 V‐0 level and LOI of 34% is achieved, and the two flame retardants incorporated in the HDPE/GNPs composite at 20 wt % in total play a synergistic effect in the flame retardancy of the composite at a mass ratio of EP@ADP:EP@APP = 2:1. According to the cone‐calorimetric data, the compounding composites present much lower peak heat release rate (300 kW/m2) and total heat release (99.4 MJ/m2) than those of pure HDPE. Raman spectroscopic analysis of the composites after combustion reveals that the degree of graphitization of the residual char can reach 2.31, indicating the remarkable flame retarding property of the composites. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46662.  相似文献   

19.
In this work, we investigated the thermal behaviour of a carbon‐fibre composite impregnated with nano‐alumina‐based nanocomposites. First of all, we demonstrated that it is possible to obtain good dispersion and distribution of nanoparticles by mechanical mixing. In all the studied filler percentages, the presence of the ceramic filler did not affect the processability of the blends and the mechanical properties of the composites. First, the thermal stability of the nanocomposites was investigated by thermogravimetric analysis (TGA). Then, the fire reaction of the fibre‐reinforced composites was studied at different heat fluxes, by TGA, cone calorimeter and exposure to a direct flame. In presence of an oxidizing hyperthermal environment, the experimental data suggested the role of ceramic particles as anti‐oxidizer agent for the char and the carbon fibres. Moreover, the use of alumina nanoparticles allowed a slight reduction of heat release rate. Particularly at a heat flux of 35 kW/m2, the burnt material containing the higher quantity of nano‐alumina maintained a residual structural integrity because of the higher presence of char that bound together the fibres. To estimate the integrity of the composites after exposure to a direct flame (heat flux 500 kW/m2), mechanical tests were carried out on the burnt specimens. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Simulation results, obtained by means of application of an enthalpy‐based pyrolysis model, are presented. The ultimate focus concerns the potential of the model to be used in flame spread simulations. As an example we discuss vertically upward flame spread over a charring material in a parallel plate configuration. First, the quality of the pyrolysis model is illustrated by means of cone calorimeter results for square (9.8 cm × 9.8 cm exposed area), 1.65 cm thick, horizontally mounted MDF samples. Temperatures are compared at the front surface and inside the material, for different externally imposed heat fluxes (20, 30 and 50 kW/m2), for dry and wet samples. The mass loss rate is also considered. Afterwards, vertically upward flame spread results are reported for large particle board plates (0.025 m thick, 0.4 m wide and 2.5 m high), vertically mounted face‐to‐face, for different horizontal spacings between the two plates. The simulation results are compared to experimental data, indicating that, provided that a correct flame height and corresponding heat flux are applied as boundary conditions, flame spread can be predicted accordingly, using the present pyrolysis model. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号