共查询到19条相似文献,搜索用时 109 毫秒
1.
2.
基于Hausdorff距离的多分辨率目标跟踪方法 总被引:3,自引:0,他引:3
针对目前运动目标跟踪算法的计算结果和效率不能令人满意的现状,提出利用改进的Hausdorff距离进行模板匹配,它具有计算量小,适应性强的特点.为了能较快的跟踪目标,采用多分辨率分析的方法处理序列图像.实验结果表明,本文的算法能显著提高运动目标跟踪的准确程度和效率. 相似文献
3.
4.
基于Hausdorff距离的图像匹配技术 总被引:10,自引:2,他引:10
文中给出一种新的点匹配方法,这种方法对从传感器图像中抽取的点与从参考图像抽取的图像点进行匹配。点匹配算法要求挫个点集之间得到仿射变换,这种变换使得一个点集到另一个点集的距离最小。 相似文献
5.
6.
Snake算法能够跟踪运动图像中对象的非刚性运动,但是对于背景复杂的图像,Snake跟踪的结果不够理想。因而在首帧分割得到对象轮廓的二值模型后,再采用基于Hausdorff距离的跟踪器,找到对象模型在后继帧中的最佳匹配位置;然后采用Snake模型对该匹配位置上的非刚性形变的像素进行匹配。实验表明:对于具有静止背景且前景对象不是快速运动的视频序列,与直接采用Snake技术进行运动对象的跟踪相比,该提取视频对象平面过程能够进一步提高结果的正确性。 相似文献
7.
8.
9.
针对可见光与红外图像差异较大导致的匹配困难的实际问题,提出了一种基于蒙特卡罗估计改进Hausdorff距离(MCM-HD)的景象匹配方法。该方法在MCHD的基础上,使用蒙特卡罗方法来估计改进的Hausdorff距离(M-HD),并定义了MCM-HD,即采用随机抽样的特征点子集来计算M-HD,从而有效地减少了计算量。为了提高匹配精度,采用分层MCM-HD与Nprod相结合的方法,在求出距离最小k个点之后采用Nprod相似性度量得出最终匹配位置。与MCHD算法相比,该算法有效提高了匹配精度,同时缩短了匹配时间。 相似文献
10.
基于Hausdorff距离的非刚体目标自适应轮廓跟踪 总被引:13,自引:1,他引:13
本文提出了一种基于Hausdorf距离的非刚体目标的轮廓跟踪算法。它的特点在于从二维序列图像中提取非刚体目标的二维可变模板,从而实现对非刚体运动目标的跟踪。此算法的主要思想在于将空间运动的非刚体目标的二维图像变化分解成二维运动变化和二维形状变化,从而加大了模板适应力,辅以过零点检测及金字塔快速搜索算法,可以实现非刚体目标的快速跟踪。最后,本文给出了对人体轮廓进行跟踪的实验结果。 相似文献
11.
文中利用目标加速度运动位移方程,预测下一时刻目标可能移动的位置,使用预测位置误差方程,估测运动目标搜索范围,并且通过启动多个Camshift跟踪器的方法,改进Camshift算法。仿真实验表明,该方法有效地克服了Camshift算法自身的缺陷,即使是加速运动的目标,也可准确地预测运动目标的位置,并且有效提高了对遮挡目标跟踪和多个人脸目标跟踪的鲁棒性。 相似文献
12.
13.
14.
15.
末制导跟踪阶段,导弹的飞行姿态,弹体与目标的距离以及目标自身的运动姿态和形态均会发生较大的变化,采用单一固定模板无法实现稳定跟踪。本文提出一种新的基于子空间的运动目标跟踪算法,首先采用一组正交的稀疏子空间特征向量表示目标模型,然后采用增量方法不断更新子空间模型,以适应由于目标内在和外在因素所造成的在外观上的变化,从而提高跟踪精度;采用重要性采样算法以及最大似然估计,解决复杂的优化问题。实验结果表明,当摄像机与背景发生较大相对运动以及目标姿态发生剧烈变化时,仍然能够实现对目标的持续稳定跟踪,平均跟踪误差小于10个像素。基本满足末制导跟踪系统的稳定性和鲁棒性等要求。 相似文献
16.
为了提高运动目标的跟踪精度,提出一种基于强跟踪滤波的传感器目标跟踪算法.首先通过传感器节点测量目标的状态值,并通过融合中心对信息进行融合,然后利用Cholesky分解技术变换成噪声独立的量化融合系统,并采用强跟踪滤波算法对目标状态进行估计,最后与其它目标跟踪算法进行对比实验.结果表明,本文算法不仅提高了目标跟踪的精度,而且具有更好的鲁棒性. 相似文献
17.
针对目前基于在线学习的On-line Boosting 算法用于视频目标跟踪时对于快速移动的目标,容易引起跟踪漂移的问题,提出一种将Surf算法融合于On-line Boosting的Surf-Boosting视频目标跟踪算法。该算法在原先的On-line Boosting算法的基础上增加跟踪漂移判断,对已跟踪漂移的视频帧使用Surf算法进行目标定位,将Surf定位到的目标作为正样本放到后续On-line Boosting算法中继续跟踪学习。实验结果表明,该方法能够很好地抑制原有算法的跟踪漂移问题,在跟踪过程中的正确率达到98%,实现对快速移动目标的正确跟踪,并具有很好的鲁棒性。 相似文献
18.
目标跟踪技术是视频检测技术中一个十分重要的组成部分,为此,提出一种基于特征点的快速跟踪算法。该方法避免了困难的目标分割过程。采用两次帧差共同确定角点选择区域,利用Moravec算法提取合适角点;采用一种特别设计的包含不平滑区域的结构化模板获取更好的匹配点;利用预测点缩小搜索范围,降低计算复杂度和时间复杂度。实验证明该算法能够快速实现目标的实时跟踪,跟踪准确度高,对不同的场景都具有良好的鲁棒性。 相似文献
19.
在多目标和杂波环境下,量测与对应目标源的关联将变得复杂,当邻近目标运动时,采用滤波算法跟踪目标时,源于目标的量测会相互干扰,导致误跟现象的发生。针对此问题,本文采用基于联合概率数据关联JPDA的方法进行处理,通过引入两个基本假设条件,即每个量测只有一个源和每个量测至多源于一个目标,计算各量测与各目标源的关联概率,进而估计出各目标的状态信息。仿真结果表明在采用本文的算法处理多目标问题时,目标的位置和速度信息能够得到较好的估计,避免误跟现象的发生。 相似文献