首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
超声场中溶胶凝胶法制备纳米氧化铝粉体的研究   总被引:3,自引:1,他引:2  
近年来,超声空化处理已被证明是一种制备纳米材料十分有效的技术,当将超声空化作用应用于溶胶凝胶法制备纳米粉体过程时,将为防止团聚体的生成创造一个独特的条件。本文以六次甲基四胺为沉淀剂,研究了超声场下溶胶凝胶法制备纳米Al2O3粉体的工艺,对产物进行了扫描电镜(SEM),X射线衍射(XRD)分析及粒度分析。实验结果表明,超声波的引入可显著提高粉体的性能。超声处理过的前驱体在1100℃煅烧2小时制得了团聚少,平均粒径在30nm左右的α-Al2O3粉体。超声波的辐射作用有利于纳米α—Al2O3粉体的制备,它的作用主要体现在防止胶粒之间的团聚和长大,及破碎团聚体的作用上。  相似文献   

2.
铟纳米颗粒及纳米线的制备   总被引:2,自引:1,他引:2  
采用化学方法使有机金属前驱体[In(η^5-C5H5)]在不同条件下分解制备金属铟纳米颗粒和纳米线。前驱体在甲苯或四氢呋喃溶剂中分解时,配位体的种类与相对量、溶剂中的水含量和紫外线照射对分解产物的成分、形貌和尺寸有很大的影响。利用十六烷基胺(HDA)或氧化三辛基膦(TOPO)配位体的作用,前驱体均可分解得到铟纳米颗粒;而在HDA相对含量高、溶剂中不含水和在紫外线照射作用下,前驱体分解反应产物为铟纳米线。  相似文献   

3.
超声沉淀法制备纳米Al2O3粉体   总被引:10,自引:0,他引:10  
将超声辐射应用于以硫酸铝铵 (NH4Al(SO4) 2 ·12H2 O )和碳酸氢铵 (NH4HCO3 )为原料的沉淀法制备Al2 O3 纳米粉体的化学反应工艺过程 ,制备了粒径为 12nm的α Al2 O3 纳米粉体。通过SEM、TEM等分析手段研究了超声辐射对前驱体NH4Al(OH) 2 CO3 沉淀物及最终粉体尺寸、形貌及其团聚行为的影响 ,并探讨了其作用机理。结果表明 :超声辐射由于其自身的空化作用不仅细化了前驱体颗粒、抑制了其间的团聚 ,而且延缓了其向凝胶的转变过程 ,从而有效地细化α Al2 O3 颗粒 ,但过高的频率却易导致颗粒间的进一步聚合  相似文献   

4.
超声沉淀法制备纳米A12O3粉体   总被引:13,自引:5,他引:13  
《中国有色金属学报》2003,13(1):122-126
将超声辐射应用于以硫酸铝铵(NH4Al(SO4)2*12H2O )和碳酸氢铵(NH4HCO3)为原料的沉淀法制备Al2O3纳米粉体的化学反应工艺过程, 制备了粒径为12 nm的α-Al2O3纳米粉体.通过SEM、TEM等分析手段研究了超声辐射对前驱体NH4Al(OH)2CO3沉淀物及最终粉体尺寸、形貌及其团聚行为的影响, 并探讨了其作用机理.结果表明 超声辐射由于其自身的空化作用不仅细化了前驱体颗粒、抑制了其间的团聚, 而且延缓了其向凝胶的转变过程, 从而有效地细化α-Al2O3颗粒, 但过高的频率却易导致颗粒间的进一步聚合.  相似文献   

5.
超声对湿化学法制备Al2O3纳米粉的影响   总被引:1,自引:0,他引:1  
采用湿化学法在超声场中制备了纳米α-Al2O3粉体,研究了超声辐射作用下前驱体颗粒的成核、长大过程,探索了超声作用下Al2O3晶型的转变.结果表明超声能量能加速前驱体的形核,超声分散可控制晶核的长大和团聚,在超声技术处理下可制备粒径仅为20 nm的NH4A1(OH)2CO3超细前驱体,这一前驱体经8 h陈化后,再经1150℃高温煅烧20 min,可制备得到粒径约为10 nm的α-A1203粉体;研究还发现高频率超声辐射可提高α相Al2O3粉体的结晶度.  相似文献   

6.
安少华  张振忠  段志伟  王超 《铸造技术》2007,28(11):1498-1501
采用直流电弧蒸发法制备了纳米铜粉,以9种表面活性剂作为分散剂,系统研究了超声分散时间和分散剂加入量对纳米铜粉在无水乙醇中分散性能的影响。研究表明:在其他条件一定的情况下,随超声时间增加,纳米铜粉分散效果先增大后减小;在各种分散剂中,PVP对纳米铜粉的分散效果最好;较佳的分散工艺为:4(wt.%)PVP,超声分散60min。  相似文献   

7.
超声场下银胶体的制备   总被引:1,自引:2,他引:1  
在超声场作用下,以聚乙烯毗咯烷酮为保护剂,硝酸银为前驱物,经硼氢化钾还原制备了稳定的银胶体。研究了保护剂和还原剂用量、超声时间和超声功率等因素对银胶体稳定性的影响,利用透射电镜、选区电子衍射和分光光度等技术对制备的银胶体进行了表征。结果表明:银纳米粒子为面心立方(fcc)结构;PVP与AgNO3质量比为1:1时,PVP可有效保护银粒子,获得了球形颗粒:AgNO3与KBH4摩尔比为1:2时,可制得分散较好的直径约为20nm的类球形银纳米颗粒;在超声场作用下,银胶体的分散性和稳定性增强。随着超声功率的增大,银纳米粒子直径变小,粒径分布变窄。超声50min制得的银胶体主要以球形纳米颗粒形式存在,粒径在10nm-20nm范围内,稳定性好。  相似文献   

8.
采用一种改进的化学还原法,在室温下合成Sn3.5Ag(质量分数,%)纳米颗粒。实验所用表面活性剂和还原剂分别为邻啡罗琳和硼氢化钠。X射线衍射分析表明所合成的纳米粒子没有明显的氧化现象。结果表明:在反应物浓度较小时,产生的一次粒子较少,团聚及二次粒子生长程度较小,纳米颗粒的尺寸也随之减小。当以某一合适的速率添加还原剂到前驱体溶液中时,表面活性剂浓度对纳米颗粒尺寸起到控制作用。由于表面活性剂分子可以与纳米团簇之间产生配位作用,因此可以抑制纳米颗粒的长大。表面活性剂与前驱体溶液质量的比值越大,得到的纳米颗粒尺寸越小。  相似文献   

9.
低温制备纳米尖晶石粉体相变温度的研究   总被引:1,自引:0,他引:1  
采用沉淀-低温燃烧法合成化学计量的纳米镁铝尖晶石粉体的前驱体 ,通过高温x射线衍射试验研究前驱体完全转变为纳米尖晶石的温度.结果表明相变的温度是1000℃.本研究在1000℃,1 h的条件下获得了纳米尖晶石粉体,通过XRD、TEM、BET等手段对所制各粉体进行了表征,一次颗粒为球形多晶,晶体结构完整,颗粒小,只有软团聚.  相似文献   

10.
通过简单的微波反应,使用一种新型的前驱体复合物[Hg(C_(13)H_(11)NSO)_2]~(2+),制备具有不同形貌和颗粒尺寸的晶体汞硫化物(HgS)。通过X射线、扫描电镜、紫外-可见光谱对产物进行表征,获得了具有不同尺寸的汞硫化物纳米结构。研究前驱体浓度、溶剂种类、微波时间和功率对产物尺寸和形貌的影响。结果表明:溶剂种类和微波功率极大地影响HgS的最终尺寸。乙二醇是合成细小颗粒HgS的最佳溶剂,制备具有尺寸分布均匀的HgS纳米颗粒的最佳功率是900 W。通过紫外-可见光谱计算出HgS纳米颗粒的带隙是3.2 eV,这相对于块体样品2 eV的带隙蓝移了1.2 eV。  相似文献   

11.
In as-welded state, each region of 2219 aluminum alloy TIG-welded joint shows diff erent microstructure and microhardness due to the diff erent welding heat cycles and the resulting evolution of second phases. After the post-weld heat treatment, both the amount and the size of the eutectic structure or θ phases decreased. Correspondingly, both the Cu content in α-Al matrix and the microhardness increased to a similar level in each region of the joint, and the tensile strength of the entire joint was greatly improved. Post-weld heat treatment played the role of solid solution strengthening and aging strengthening. After the post-weld heat treatment, the weld performance became similar to other regions, but weld reinforcements lost their reinforcing eff ect on the weld and their existence was more of an adverse eff ect. The joint without weld reinforcements after the post-weld heat treatment had the optimal tensile properties, and the specimens randomly crack in the weld zone.  相似文献   

12.
After nearly two years' tense construction, the first phase of industrialized base of Shenyang Research Institute of Foundry (SRIF), located at the Tiexi Casting and Forging Industrial Park in the west of Tiexi District, has now been completed and formally put into operation.  相似文献   

13.
Institute of Process Engineering, Chinese Academy of Sciences, China, has proposed a method for oxidative leaching of chromite with potassium hydroxide. Understanding the mechanism of chromite decomposition, especially in the potassium hydroxide fusion, is important for the optimization of the operating parameters of the oxidative leaching process. A traditional thermodynamic method is proposed and the thermal decomposition and the reaction decomposition during the oxidative leaching of chromite with KOH and oxygen is discussed, which suggests that chromite is mainly destroyed by reactions with KOH and oxygen. Meanwhile, equilibrium of the main reactions of the above process was calculated at different temperatures and oxygen partial pressures. The stable zones of productions, namely, K2CrO4 and Fe2O3, increase with the decrease of temperature, which indicates that higher temperature is not beneficial to thermodynamic reactions. In addition, a comparison of the general alkali methods is carried out, and it is concluded that the KOH leaching process is thermodynamically superior to the conventional chromate production process.  相似文献   

14.
The effect of isochronal heat treatments for 1h on variation of damping, hardness and microstructural change of the magnesium wrought alloy AZ61 was investigated. Damping and hardness behaviour could be attributed to the evolution of precipitation process. The influence of precipitation on damping behaviour was explained in the framework of the dislocation string model of Granato and Lücke.  相似文献   

15.
The Lanthanum-doped bismuth ferrite–lead titanate compositions of 0.5(Bi LaxFe1-xO3)–0.5(Pb Ti O3)(x = 0.05,0.10,0.15,0.20)(BLxF1-x-PT) were prepared by mixed oxide method.Structural characterization was performed by X-ray diffraction and shows a tetragonal structure at room temperature.The lattice parameter c/a ratio decreases with increasing of La(x = 0.05–0.20) concentration of the composites.The effect of charge carrier/ion hopping mechanism,conductivity,relaxation process and impedance parameters was studied using an impedance analyzer in a wide frequency range(102–106Hz) at different temperatures.The nature of Nyquist plot confirms the presence of bulk effects only,and non-Debye type of relaxation processes occurs in the composites.The electrical modulus exhibits an important role of the hopping mechanism in the electrical transport process of the materials.The ac conductivity and dc conductivity of the materials were studied,and the activation energy found to be 0.81,0.77,0.76 and 0.74 e V for all compositions of x = 0.05–0.20 at different temperatures(200–300 °C).  相似文献   

16.
The orientation relationships(ORs)between the martensite and the retained austenite in low-and medium-carbon steels after quenching–partitioning–tempering process were studied in this work.The ORs in the studied steels are identified by selected-area electron diffraction(SAED)as either K–S or N–W ORs.Meanwhile,the ORs were also studied based on numerical fitting of electron backscatter diffraction data method suggested by Miyamoto.The simulated K–S and N–W ORs in the low-index directions generally do not well coincide with the experimental pole figure,which may be attributed to both the orientation spread from the ideal variant orientations and high symmetry of the low-index directions.However,the simulated results coincide well with experimental pole figures in the high-index directions{123}_(bcc).A modified method with simplicity based on Miyamoto’s work was proposed.The results indicate that the ORs determined by modified method are similar to those determined by Miyamoto’method,that is,the OR is near K–S OR for the low-carbon Q–P–T steel,and with the increase of carbon content,the OR is closer to N–W OR in medium-carbon Q–P–T steel.  相似文献   

17.
On the basis of the single-particle framework, a new theory on inclusion growth in metallurgical melts is developed to study the kinetics of inclusion growth on account of reaction and collision. The studies show that the early growth of inclusion depends on reaction growth and Brawnian motion collision, and where the former is decisive, the late growth depends on turbulence collision and Stokes' collision, and where the former is dominant; collision growth is very quick during the smelting process, lessened in the refining process, but nearly negligible in the continuous casting process.  相似文献   

18.
The motion of melt droplets in spray degassing process was analyzed theoretically. The height of the treatment tank in spray degassing process could be determined by the results of theoretical calculation of motion of melt droplets. To know whether the melt droplets would solidify during spraying process, the balance temperature of melt droplets was also theoretically analyzed. Then proof experiments for theoretical results about temperature of melt droplets were carried. In comparison, the experimental results were nearly similar to the calculation results.  相似文献   

19.
This work was to reveal the residual stress profile in electron beam welded Ti-6Al-4V alloy plates(50 mm thick) by using finite element and contour measurement methods.A three-dimensional finite element model of 50-mmthick titanium component was proposed,in which a column–cone combined heat source model was used to simulate the temperature field and a thermo-elastic–plastic model to analyze residual stress in a weld joint based on ABAQUS software.Considering the uncertainty of welding simulation,the computation was calibrated by experimental data of contour measurement method.Both test and simulated results show that residual stresses on the surface and inside the weld zone are significantly different and present a narrow and large gradient feature in the weld joint.The peak tensile stress exceeds the yield strength of base materials inside weld,which are distinctly different from residual stress of the thin Ti-6Al-4V alloy plates presented in references before.  相似文献   

20.
Silicon carbide nanoparticle-reinforced nickel-based composites(Ni–Si CNP),with a Si CNPcontent ranged from1 to 3.5 wt%,were prepared using mechanical alloying and spark plasma sintering.In addition,unreinforced pure nickel samples were also prepared for comparative purposes.To characterize the microstructural properties of both the unreinforced pure nickel and the Ni–Si CNPcomposites transmission electron microscopy(TEM) was used,while their mechanical behavior was investigated using the Vickers pyramid method for hardness measurements and a universal tensile testing machine for tensile tests.TEM results showed an array of dislocation lines decorated in the sintered pure nickel sample,whereas,for the Ni–Si CNPcomposites,the presence of nano-dispersed Si CNPand twinning crystals was observed.These homogeneously distributed Si CNPwere found located either within the matrix,between twins or on grain boundaries.For the Ni–Si CNPcomposites,coerced coarsening of the Si CNPassembly occurred with increasing Si CNPcontent.Furthermore,the grain sizes of the Ni–Si CNPcomposites were much finer than that of the unreinforced pure nickel,which was considered to be due to the composite ball milling process.In all cases,the Ni–Si CNPcomposites showed higher strengths and hardness values than the unreinforced pure nickel,likely due to a combination of dispersion strengthening(Orowan effects) and particle strengthening(Hall–Petch effects).For the Ni–Si CNPcomposites,the strength increased initially and then decreased as a function of Si CNPcontent,whereas their elongation percentages decreased linearly.Compared to all materials tested,the Ni–Si CNPcomposite containing 1.5% Si C was found more superior considering both their strength and plastic properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号