首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Kainic acid (KA) induces status epilepticus and delayed neurodegeneration of CA3 hippocampal neurons. Downregulation of glutamate receptor 2 (GluR2) subunit mRNA [the alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA) subunit that limits Ca2+ permeability] is thought to a play role in this neurodegeneration, possibly by increased formation of Ca2+ permeable AMPA receptors. The present study examined early hippocampal decreases in GluR2 mRNA and protein following kainate-induced status epilepticus and correlated expression changes with the appearance of dead or dying cells by several histological procedures. At 12 h, in situ hybridization followed by emulsion dipping showed nonuniform decreases in GluR2 mRNA hybridization grains overlying morphologically healthy-appearing CA3 neurons. GluR1 and N-methyl-D-aspartate receptor mRNAs were unchanged. At 12-16 h, when little argyrophilia or cells with some features of apoptosis were detected by silver impregnation or electron microscopy, single immunohistochemistry with GluR2 and GluR2/3 subunit-specific antibodies demonstrated a pattern of decreased GluR2 receptor protein within CA3 neurons that appeared to predict a pattern of damage, similar to the mRNA observations. Double immunolabeling showed that GluR2 immunofluorescence was depleted and that GluR1 immunofluorescence was sustained in clusters of the same CA3 neurons. Quantitation of Western blots showed increased GluR1:GluR2 ratios in CA3 but not in CA1 or dentate gyrus subfields. Findings indicate that the GluR1:GluR2 protein ratio is increased in a population of CA3 neurons prior to significant cell loss. Data are consistent with the "GluR2 hypothesis" that reduced expression of GluR2 subunits will increase formation of AMPA receptors permeable to Ca2+ and predict vulnerability to a particular subset of pyramidal neurons following status epilepticus.  相似文献   

2.
Transient, severe forebrain or global ischemia leads to delayed cell death of pyramidal neurons in the hippocampal CA1. The precise molecular mechanisms underlying neuronal cell death after global ischemia are as yet unknown. Glutamate receptor-mediated Ca2+ influx is thought to play a critical role in this cell death. In situ hybridization revealed that the expression of mRNA encoding GluR2 (the subunit that limits Ca2+ permeability of AMPA-type glutamate receptors) was markedly and specifically reduced in gerbil CA1 pyramidal neurons after global ischemia but before the onset of neurodegeneration. To determine whether the change in GluR2 expression is functionally significant, we examined the AMPA receptor-mediated rise in cytoplasmic free Ca2+ level ([Ca2+]i) in individual CA1 pyramidal neurons by optical imaging with the Ca2+ indicator dye fura-2 and by intracellular recording. Seventy-two hours after ischemia, CA1 neurons that retained the ability to fire action potentials exhibited a greatly enhanced AMPA-elicited rise in [Ca2+]i. Basal [Ca2+]i in these neurons was unchanged. These findings provide evidence for Ca2+ entry directly through AMPA receptors in pyramidal neurons destined to die. Downregulation of GluR2 gene expression and an increase in Ca2+ influx through AMPA receptors in response to endogenous glutamate are likely to contribute to the delayed neuronal death after global ischemia.  相似文献   

3.
4.
Two-color immunofluorescence histochemistry and immunohistochemistry in combination with retrograde tract-tracing techniques were used to examine the relationship of alpha-amino-3-hydroxy-5-methyl-4-isoxazole proprionic acid (AMPA)-selective glutamate receptor subunits (GluR1, GluR2/3/4c and GluR4) to identified populations of striatal projection neurons and interneurons. The majority of striatonigral and striatopallidal neurons were double-labeled for GluR2/3/4c. These findings were confirmed using calbindin to label matrix projection neurons. In contrast, immunostaining of the GluR1 subunit was not observed to co-localize with any striatal projection neurons. Striatal interneurons immunostained for parvalbumin were also labeled by antibodies directed against the GluR1 subunit. Approximately 50% of parvalbumin neurons also contained GluR2/3/4c. Somatostatin immunoreactivity did not co-localize with either the GluR1 or GluR2/3/4c subunits. GluR4-immunoreactive neurons were not observed in striatum. This study demonstrates that AMPA-selective glutamate receptors are differentially localized on subpopulations of striatal neurons and interneurons. These findings suggest that discrete striatal neuron populations may express different AMPA receptor subunit combinations which may account for their functional specificity.  相似文献   

5.
Glutamatergic neurotransmission in the neostriatum and the globus pallidus is mediated through NMDA-type as well as other glutamate receptors and is critical in the expression of basal ganglia function. In order to characterize the cellular, subcellular and subsynaptic localization of NMDA receptors in the neostriatum and globus pallidus, multiple immunocytochemical techniques were applied using antibodies that recognize the NR1 subunit of the NMDA receptor. In order to determine the spatial relationship between NMDA receptors and AMPA receptors, double labelling was performed with the NR1 antibodies and an antibody that recognizes the GluR2 and 3 subunits of the AMPA receptor. In the neostriatum all neurons with characteristics of spiny projection neurons, some interneurons and many dendrites and spines were immunoreactive for NR1. In the globus pallidus most perikarya and many dendritic processes were immunopositive. Immunogold methods revealed that most NR1 labelling is associated with asymmetrical synapses and, like the labelling for GluR2/3, is evenly spread across the synapse. Double immunolabelling revealed that in neostriatum, over 80% of NR1-positive axospinous synapses are also positive for GluR2/3. In the globus pallidus most NR1-positive synapses are positive for GluR2/3. In both regions many synapses labelled only for GluR2/3 were also detected. These results, together with previous data, suggest that NMDA and AMPA receptor subunits are expressed by the same neurons in the neostriatum and globus pallidus and that NMDA and AMPA receptors are, at least in part, colocalized at individual asymmetrical synapses. The synaptic responses to glutamate in these regions are thus likely be mediated by both AMPA and NMDA receptors at the level of individual synapses.  相似文献   

6.
The cause of the selective degeneration of motor neurons in amyotrophic lateral sclerosis (ALS) remains unexplained. One potential pathogenetic mechanism is chronic toxicity due to disturbances of the glutamatergic neurotransmitter system, mediated via alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-sensitive glutamate receptors. Functional AMPA receptors consist of various combinations of four subunits (designated GluR1-4). The GluR2 subunit is functionally dominant and renders AMPA receptors impermeable to calcium. Most native AMPA receptors in the mammalian central nervous system (CNS) contain the GluR2 subunit and are calcium impermeable. We have investigated the composition of AMPA receptors expressed on normal human spinal motor neurons by in situ hybridization to determine their likely subunit stoichiometry. Highly significant levels of mRNA were detected for the GluR1, GluR3, and GluR4 subunits. However, GluR2 subunit mRNA was not detectable in this cell group. The absence of detectable GluR2 mRNA in normal human spinal motor neurons predicts that they express calcium-permeable AMPA receptors unlike most neuronal groups in the human CNS. Expression of atypical calcium-permeable AMPA receptors by human motor neurons provides a possible mechanism whereby disturbances of glutamate neurotransmission in ALS may selectively injure this cell group.  相似文献   

7.
8.
9.
10.
1. By measuring the apparent reversal potential (aErev) of kainate- and alpha-amino-3-hydroxyl-5-methyl-4-isoxazole propionic acid (AMPA)-evoked currents associated with changes in extracellular Ca2+ concentration ([Ca2+]e), we have been able to identify embryonic dorsal horn neurons grown in tissue culture that express Ca(2+)-permeable non-N-methyl-D-aspartic acid (NMDA) receptors. 2. The relative expression of Ca(2+)-permeable and Ca(2+)-impermeable non-NMDA receptors varies from cell to cell. This was evident from the range of a ErevS observed for kainate-evoked currents in a 0 mM [Na+]e, 10 mM [Ca2+]e bath. Under these conditions, aErev ranged from -96 to -21 mV, suggesting that the percentage of the non-NMDA receptors on each neuron that are Ca(2+)-permeable is variable. 3. To determine the extent to which the variability in aErev is due to variable receptor expression rather than experimental variability, we compared the effects of changes in [Ca2+]e on kainate-evoked currents and NMDA-evoked currents on the same cells. Assuming that all of the NMDA receptors on each neuron have a similar Ca2+ permeability, this approach provides an index of the sensitivity of our assay system. The reversal potential of NMDA-evoked currents in 10 mM [Ca2+]e ranged from -30 to -7 mV, whereas on the same population of neurons, the aErev of kainate-evoked currents ranged from -92 to -40 mV. 4. The rectification properties of the non-NMDA currents were generally linear or outwardly rectifying in normal bath solution. When the PCa/PCs ratio in 0 mM [Na+]e, 10 mM [Ca2+]e bath solution was assessed as a function of the rectification index in standard bath, a poor correlation was found between Ca2+ permeability and the rectification index. 5. The aErev of kainate-evoked currents was similar to that of cyclothiazide-enhanced AMPA-evoked currents observed on the same cells (-66.5 +/- 18.4 and -64.0 +/- 13.9 mV, mean +/- SD, respectively). This suggests that kainate is primarily activating the AMPA receptor and that the majority of non-NMDA receptors on embryonic dorsal horn neurons in culture are high-affinity AMPA receptors. 6. Immunocytochemical evidence suggests that the AMPA receptor subunits GluR1-4 are expressed to a variable degree from cell to cell in our cultures. We found evidence for low levels of expression of the kainate receptor subunits GluR5-7. The immunocytochemical observations support the physiological data indicating that much of the kainate-evoked current recorded in our experiments can be accounted for by kainate activation of AMPA receptors.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
The associations of glutamate receptor subunits (NMDAR1, AMPA GluR1 and GluR2/3) and spinothalamic tract neurons in the rat lumbar spinal cord dorsal horn were investigated. Staining for NMDAR1 and AMPA GluR1 and GluR2/3 receptor subunits was observed throughout the spinothalamic tract soma and dendrites, particularly in association with the rough endoplasmic reticulum and some postsynaptic membrane sites. Immunostaining for NMDAR1 and AMPA GluR2/3 was also noted in presynaptic membrane sites. Localization of both NMDA and AMPA glutamate receptor subunits in association with spinothalamic tract neurons provides anatomical evidence in support of the various interactions reported for glutamate receptors in nociception. Presynaptic localization of the AMPA GluR2/3 receptor subunit suggests that spinothalamic tract cells may also be affected presynaptically by AMPA glutamate receptor interactions.  相似文献   

12.
To demonstrate the regional, cellular and subcellular distributions of non-N-methyl-D-aspartate glutamate receptors in rat brain, we generated antipeptide antibodies that recognize the C-terminal domains of individual subunits of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA)-preferring glutamate receptors (i.e. GluR1, GluR4, and a region highly conserved in GluR2, GluR3 and GluR4c). On immunoblots, antibodies detect distinct proteins with mol. wts ranging from 102,000 to 108,000 in homogenates of rat brain. Immunocytochemistry shows that glutamate receptor subunits are distributed abundantly and differentially within neuronal cell bodies and processes in cerebral cortex, basal ganglia, limbic system, thalamus, cerebellum and brainstem. The precise patterns and cellular localizations of glutamate receptor subunit immunoreactivities are unique for each antibody. In neocortex and hippocampus, pyramidal neurons express GluR1 and GluR2/3/4c immunoreactivities; many non-pyramidal, calcium-binding, protein-enriched neurons in cerebral cortex are selectively immunoreactive for GluR1. In striatum, the cellular localizations of GluR1, GluR2/3/4c and GluR4 immunoreactivities are different; in this region, GluR1 co-localizes with many cholinergic neurons but is only present in a minor proportion of nicotinamide adenine dinucleotide phosphate diaphorase-positive striatal neurons. GluR1 co-localizes with most dopaminergic neurons within the substantia nigra. In several brain regions, astrocytes show GluR4 immunoreactivity. Within the cerebellar cortex, cell bodies and processes of Bergmann glia express intense GluR4 and GluR1 immunoreactivities; perikarya and dendrites of Purkinje cells show GluR2/3/4c immunoreactivity but no evidence of GluR1 or GluR4. Ultrastructurally, GluR subunit immunoreactivities are localized within cell bodies, dendrites and dendritic spines of specific subsets of neurons and, in the case of GluR1 and GluR4, in some populations of astrocytes. This investigation demonstrates that individual AMPA-preferring glutamate receptor subunits are distributed differentially in the brain and suggests that specific neurons and glial cells selectively express glutamate receptors composed of different subunit combinations. Thus, the co-expression of all AMPA receptor subunits within individual cells may not be obligatory for the functions of this glutamate receptor in vivo.  相似文献   

13.
14.
15.
16.
N-methyl--aspartate (NMDA) receptors are often the first ionotropic glutamate receptors expressed at early stages of development and appear to influence neuronal differentiation by mediating Ca2+ influx. Although less well studied, alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors also can generate Ca2+ elevations and may have developmental roles. We document the presence of AMPA and NMDA class receptors and the absence of kainate class receptors with whole cell voltage-clamp recordings from Xenopus embryonic spinal neurons differentiated in vitro. Reversal potential measurements indicate that AMPA receptors are permeable to Ca2+ both in differentiated neurons and at the time they first are expressed. The PCa/Pmonocation of 1.9 is close to that of cloned Ca2+-permeable AMPA receptors expressed in heterologous systems. Ca2+ imaging reveals that Ca2+ elevations are elicited by AMPA or NMDA in the absence of Mg2+. The amplitudes and durations of these agonist-induced Ca2+ elevations are similar to those of spontaneous Ca2+ transients known to act as differentiation signals in these cells. Two sources of Ca2+ amplify AMPA- and NMDA-induced Ca2+ elevations. Activation of voltage-gated Ca2+ channels by AMPA- or NMDA-mediated depolarization contributes approximately 15 or 30% of cytosolic Ca2+ elevations, respectively. Activation of either class of receptor produces elevations of Ca2+ that elicit further release of Ca2+ from thapsigargin-sensitive but ryanodine-insensitive stores, contributing an additional approximately 30% of Ca2+ elevations. Voltage-clamp recordings and Ca2+ imaging both show that these spinal neurons express functional AMPA receptors soon after neurite initiation and before expression of NMDA receptors. The Ca2+ permeability of AMPA receptors, their ability to generate significant elevations of [Ca2+]i, and their appearance before synapse formation position them to play roles in neural development. Spontaneous release of agonists from growth cones is detected with glutamate receptors in outside-out patches, suggesting that spinal neurons are early, nonsynaptic sources of glutamate that can influence neuronal differentiation in vivo.  相似文献   

17.
We have used cultures of purified embryonic rat spinal cord motor neurons to study the neurotoxic effects of prolonged ionotropic glutamate receptor activation. NMDA and non-NMDA glutamate receptor agonists kill a maximum of 40% of the motor neurons in a concentration- and time-dependent manner, which can be blocked by receptor subtype-specific antagonists. Subunit-specific antibodies stain all of the motor neurons with approximately the same intensity and for the same repertoire of subunits, suggesting that the survival of the nonvulnerable population is unlikely to be due to the lack of glutamate receptor expression. Extracellular Ca2+ is required for excitotoxicity, and the route of entry initiated by activation of non-NMDA, but not NMDA, receptors is L-type Ca2+ channels. Ca2+ imaging of motor neurons after application of specific glutamate receptor agonists reveals a sustained rise in intracellular Ca2+ that is present to a similar degree in most motor neurons, and can be blocked by appropriate receptor/channel antagonists. Although the lethal effects of glutamate receptor agonists are seen in only a subset of cultured motor neurons, the basis of this selectivity is unlikely to be simply the glutamate receptor phenotype or the level/pattern of rise in agonist-evoked intracellular Ca2+.  相似文献   

18.
We have examined the membrane localization of an AMPA receptor subunit (GluR1) and an NMDA receptor subunit (NR1) endogenously expressed in primary cultures of rat hippocampal neurons. In unstimulated cultures, both GluR1 and NR1 subunits were concentrated in SV2-positive synaptic clusters associated with dendritic shafts and spines. Within 5 min after the addition of 100 microM glutamate to the culture medium, a rapid and selective redistribution of GluR1 subunits away from a subset of synaptic sites was observed. This redistribution of GluR1 subunits was also induced by AMPA, did not require NMDA receptor activation, did not result from ligand-induced neurotoxicity, and was reversible after the removal of agonist. The activation-induced redistribution of GluR1 subunits was associated with a pronounced (approximately 50%) decrease in the frequency of miniature EPSCs, consistent with a role of GluR1 subunit redistribution in mediating rapid regulation of synaptic efficacy. We conclude that ionotropic glutamate receptors are regulated in native neurons by rapid, subtype-specific membrane trafficking, which may modulate synaptic transmission in response to physiological or pathophysiological activation.  相似文献   

19.
1. With the use of the whole cell voltage-clamp technique, I have recorded the current responses to ionotropic glutamate receptor agonists of rod bipolar cells in vertical slices of rat retina. Rod bipolar cells constitute a single population of cells and were visualized by infrared differential interference contrast video microscopy. They were targeted by the position of their cell bodies in the inner nuclear layer and, after recording, were visualized in their entirety by labeling with the fluorescent dye Lucifer yellow, which was included in the recording pipette. To study current-voltage relationships of evoked currents, voltage-gated potassium currents were blocked by including Cs+ and tetraethylammonium+ in the recording pipette. 2. Pressure application of the non-N-methyl-D-aspartate (non-NMDA) receptor agonists kainate and (S)-alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) from puffer pipettes evoked a long-latency conductance increase selective for chloride ions. When the intracellular chloride concentration was increased, the reversal potential changed, corresponding to the change in equilibrium potential for chloride. The response was evoked in the presence of 5 mM Co2+ and nominally O mM Ca2+ in the extracellular solution, presumably blocking all external Ca2(+)-dependent release of neurotransmitter. 3. The long latency of kainate-evoked currents in bipolar cells contrasted with the short-latency currents evoked by gamma-aminobutyric acid (GABA) and glycine in rod bipolar cells and by kainate in amacrine cells. 4. Application of NMDA evoked no response in rod bipolar cells. 5. Coapplication of AMPA with cyclothiazide, a blocker of agonist-evoked desensitization of AMPA receptors, enhanced the conductance increase compared with application of AMPA alone. Coapplication of the non-NMDA receptor antagonist 6-cyano-7-nitroquinoxaline-2,3-dione blocked the response to kainate and AMPA, indicating that the response was mediated by conventional ionotropic glutamate receptors. 6. The conductance increase evoked by non-NMDA receptor agonists could not be blocked by a combination of 100 microM picrotoxin and 10 microM strychnine. Application of the GABAC receptor antagonist 3-aminopropyl (methyl)phosphinic acid (3-APMPA) strongly reduced the response, and coapplication of 500 microM 3-APMPA and 100 microM picrotoxin completely blocked the response. These results suggested that the conductance increase evoked by non-NMDA receptor agonists was mediated by release of GABA and activation of GABAC receptors, and most likely also GABAA receptors, on rod bipolar cells. 7. Kainate responses like those described above could not be evoked in bipolar cells in which the axon had been cut somewhere along its passage to the inner plexiform layer during the slicing procedure. This suggests that the response was dependent on the integrity of the axon terminal in the inner plexiform layer, known to receive GABAergic synaptic input from amacrine cells. 8. The results indicate that ionotropic glutamate receptors are not involved in mediating synaptic input from photoreceptors to rod bipolar cells and that an unconventional mechanism of GABA release from amacrine cells might operate in the inner plexiform layer.  相似文献   

20.
The expression of glutamate receptor/subunit mRNAs was examined 3 weeks after discontinuing 1 week of daily injections of saline or cocaine. The level of mRNA for GluR1-4, NMDAR1, and mGluR5 receptors was measured with in situ hybridization and RT-PCR. In nucleus accumbens, acute cocaine treatment significantly reduced the mRNA level for GluR3, GluR4, and NMDAR1 subunits, whereas repeated cocaine reduced the level for GluR3 mRNA. Acute cocaine treatment also reduced the NMDAR1 mRNA level in dorsolateral striatum and ventral tegmental area. In prefrontal cortex, repeated cocaine treatment significantly increased the level of GluR2 mRNA. The GluR2 mRNA level was not changed by acute or repeated cocaine in any other brain regions examined. Repeated cocaine treatment also significantly increased mGluR5 mRNA levels in nucleus accumbens shell and dorsolateral striatum. Functional properties of the ionotropic glutamate receptors are determined by subunit composition. In addition, metabotropic glutamate receptors can modulate synaptic transmission and the response to stimulation of ionotropic receptors. Thus, the observed changes in levels of AMPA and NMDA receptor subunits and the mGluR5 metabotropic receptor may alter excitatory neurotransmission in the mesocorticolimbic dopamine system, which could play a significant role in the enduring biochemical and behavioral effects of cocaine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号