首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Total strain controlled low cycle fatigue tests on IMI 834 have been conducted in air in the temperature range between 375 and 500 °C at a temperature interval of 25 °C at the nominal strain rate of 6.67 × 10−4 s−1. The observed maximum peak stress ratio, minimum half-life plastic strain range and lower fatigue life at 425 °C indicates the occurrence of dynamic strain aging (DSA). Pronounced deformation bands, increased dislocation density and non-uniform dispersion of dislocations inside primary α grains observed by the study of transmission electron microscopy supports the occurrence of dynamic strain aging. Initial cyclic softening was attributed to shearing of Ti3Al precipitates as revealed by TEM evidences.  相似文献   

2.
The fatigue behaviour of titanium 829 in its oil quenched (‘basketweave’) and air cooled (‘aligned’) microstructural forms has been examined at 600°C and room temperature under fully reversed, total strain controlled conditions. Identical endurances are observed for each microstructure together with a low transition life. Similarly, almost perfect cyclic stability is exhibited irrespective of microstructure, temperature, strain range and rate. This is tentatively attributed to the ability of the aligned colonies present in both microstructures to accomodate plasticity. It is argued that a reduction in strain rate shortens life due to environmental effects. Multiple crack initiation is generally associated with facet-like features, with later growth surfaces bearing striations only after fatigue at 600°C.  相似文献   

3.
The numerical estimation of evolving damage under low cycle fatigue loading condition has been performed in the near‐α titanium alloy IMI‐834 at 823 K temperature. By using the experimentally determined parameters as input, numerical simulation of fatigue damage has been performed on round specimens using finite element analysis. Coupled deformation‐damage model has been established for this alloy for simulation of damage evolution in a three‐dimensional cylindrical low cycle fatigue test specimen. The fatigue damage estimates from numerical simulation are observed to be in close agreement with the experimental results.  相似文献   

4.
We report on in situ fatigue tests performed in an environmental scanning electron microscope on high-temperature titanium alloy IMI 834 in the range from room temperature to 600 °C both in vacuum and water vapor environments. At low and intermediate temperatures (400 °C) cracks were found to initiate at slip bands independent of the actual environment. However, crack initiation in water vapor occurred at a much lower number of cycles. At 600 °C, the environmental effect became even more pronounced as cracks could easily form in an oxygen-enriched brittle subsurface layer. Moreover, fatigue life at this temperature was found to decrease distinctly in the case of cycling in pure water vapor as compared to loading in ambient air.  相似文献   

5.
Serrated flow behavior in a near alpha titanium alloy IMI 834   总被引:1,自引:0,他引:1  
Serrated behavior of near alpha titanium alloy IMI 834 has been studied at elevated temperature from 400 °C to 475 °C. Serrations morphology was found as A type of locking serrations followed by B type serrations at 400 °C. E type of serrations has been observed at higher strains at 425 °C. B type and unlocking serrations of CA type at 450 °C and again A and CB type serrations were found at 475 °C. In strength parameters, anomalous tensile behavior was found in the variation of tensile strength and yield strength with test temperature in the temperature range between 400 °C and 475 °C. However, the variation of normalized flow stress showed regions I–III with test temperature. Regions I and III correspond to normal tensile behavior and region II corresponds to anomalous tensile behavior. Blue brittle temperature of IMI 834 was attributed at 450 °C by confirming minimum ductility of 8.2%. In present study, a different approach has been adopted to show the change in deformation behavior during serrated region called as abrupt change in strain path. Maximum irregularity in flow behavior has been observed at 450 °C and 475 °C. Room temperature fractographic features showed transgranular features whereas mixed ductile and cleavage fracture has been observed in the temperature range between 400 °C and 475 °C. However, reverse slope behavior has been observed in the plot of critical strain versus test temperature at 450 °C, which could be due to silicide precipitation. In the present study, interaction of dislocations with interstitial/substitutional solutes is responsible for dynamic strain aging in IMI 834.  相似文献   

6.
The fatigue behaviour of a titanium alloy Ti‐6Al‐4V with equiaxed microstructure (EM) under different values of tensile mean stress or stress ratio (R) was investigated from high‐cycle fatigue (HCF) to very‐high‐cycle fatigue (VHCF) regimes via ultrasonic axial cycling. The effect of mean stress or R on the fatigue strength of HCF and VHCF was addressed by Goodman, Gerber, and Authors' formula. Three types of crack initiation, namely, surface‐with‐RA (rough area), surface‐without‐RA, and interior‐with‐RA, were classified. The maximum value of stress intensity factor (SIF) at RA boundary for R < 0 keeps constant regardless of R in HCF and VHCF regimes. The SIF range at RA boundary for R > 0 also keeps constant regardless of R in VHCF regime, but this value decreases linearly with the increase of R for surface RA cases. The microstructure observation at RA regions gives a new result of nanograin formation only in the cases of negative stress ratios for the titanium alloy with EM, which is explained by the mechanism of numerous cyclic pressing.  相似文献   

7.
Simulated flight (FALSTAFF) fatigue tests have been carried out on precracked single edgenotch test-pieces of (Ti4Al4Mo2Sn0.5Si) IMI 550 titanium alloy. Predictions of simulated flight fatigue behaviour have been made from constant amplitude fatigue data, using a damage accumulation approach, with no allowance for load history. The predicted lives were conservative compared with the measured lives, and accurate within a factor of approximately two. Retardation of fatigue crack growth increased with increasing load amplitude. The microstructure produced by β-solution heat treatment at 1010°C, followed by ageing, was found to improve simulated flight fatigue lives by up to approximately 100% compared with standard solution treatment at 900°C, followed by ageing.  相似文献   

8.
Combined low‐cycle fatigue/high‐cycle fatigue (LCF/HCF) loadings were investigated for smooth and circumferentially V‐notched cylindrical Ti–6Al–4V fatigue specimens. Smooth specimens were first cycled under LCF loading conditions for a fraction of the previously established fatigue life. The HCF 107 cycle fatigue limit stress after LCF cycling was established using a step loading technique. Specimens with two notch sizes, both having elastic stress concentration factors of Kt = 2.7, were cycled under LCF loading conditions at a nominal stress ratio of R = 0.1. The subsequent 106 cycle HCF fatigue limit stress at both R = 0.1 and 0.8 was determined. The combined loading LCF/HCF fatigue limit stresses for all specimens were compared to the baseline HCF fatigue limit stresses. After LCF cycling and prior to HCF cycling, the notched specimens were heat tinted, and final fracture surfaces examined for cracks formed during the initial LCF loading. Fatigue test results indicate that the LCF loading, applied for 75% of total LCF life for the smooth specimens and 25% for the notched specimens, resulted in only small reductions in the subsequent HCF fatigue limit stress. Under certain loading conditions, plasticity‐induced stress redistribution at the notch root during LCF cycling appears responsible for an observed increase in HCF fatigue limit stress, in terms of net section stress.  相似文献   

9.
The low‐cycle fatigue behaviour of a cast Al–12Si–CuNiMg alloy, with a high content of Si, is investigated at 200, 350 and 400 °C. The fatigue test results show that the alloy exhibits symmetrical hysteresis loops, moderate cyclic softening and higher fatigue resistance at higher temperature. The fracture surface analysis reveals that more tear ridges are formed at higher temperature, which strongly affect the fatigue resistance. Furthermore, evaluation of the material fatigue resistance using an energy‐based Halford–Marrow model indicates that the material's ability to absorb and dissipate plastic strain energy is enhanced as temperature increases.  相似文献   

10.
In the article, the low‐cycle fatigue life durability of thin‐plate auxetic cellular structures is compared with the thin‐plate specimens of standard shape. Both the re‐entrant auxetic cellular structures and the standard specimens were cut from a 2‐mm‐thick strip of aluminium alloy 7075‐T651. First, a fatigue life curve and a cyclic curve were determined for the standard specimens. A special antibuckling device was applied to prevent the bending of the specimens. The same experimental arrangement was then applied to determine the low‐cycle fatigue life of auxetic structures. In the continuation, the most appropriate method was selected to calculate the fatigue life on the basis of the measured fatigue life curves. Abaqus and SIMULIA fe‐safe software were applied for this purpose. The best predictions for the standard specimens were obtained with the Brown‐Miller method. Finally, the selected method was applied to predict the low‐cycle fatigue life of re‐entrant auxetic cellular specimens.  相似文献   

11.
The high‐cycle fatigue and fracture behaviours of Cu‐Be alloy with tensile strength ranging from 500 to 1300 MPa acquired by different treatments were studied. Fatigue crack initiation, fracture surface morphologies, S‐N curves and fatigue strength show obvious differences due to the change of microstructure. At relatively low‐strength level, some fatigue cracks originated from defects; while at high‐strength level, all the fatigue cracks initiated from cleavage facets. It was found that the fatigue ratio increases linearly and fatigue strength changes quadratically with increasing tensile strength, only considering one strengthening mechanism. Finally, the fatigue strengths of various Cu‐Be alloys were summarized.  相似文献   

12.
A cumulative fatigue damage model is presented to estimate fatigue life for high‐strength steels in high‐cycle and very‐high‐cycle fatigue regimes with fish‐eye mode failure, and a simple formula is obtained. The model takes into account the inclusion size, fine granular area (FGA) size, and tensile strength of materials. Then, the ‘equivalent crack growth rate’ of FGA is proposed. The model is used to estimate the fatigue life and equivalent crack growth rate for a bearing steel (GCr15) of present investigation and four high‐strength steels in the literature. The equivalent crack growth rate of FGA is calculated to be of the order of magnitude of 10?14–10?11 m/cycle. The estimated results accord well with the present experimental results and prior predictions and experimental results in the literature. Moreover, the effect of inclusion size on fatigue life is discussed. It is indicated that the inclusion size has an important influence on the fatigue life, and the effect is related to the relative size of inclusion for FGA. For the inclusion size close to the FGA size, the former has a substantial effect on the fatigue life. While for the relatively large value of FGA size to inclusion size, it has little effect on the fatigue life.  相似文献   

13.
Hot‐work tool steel H11 is extensively applied in extrusion industries as extrusion tools. The understanding of its mechanical properties and damage evolution as well as failure is crucial for its implementation. In this paper, a finite element (FE) model employing Chaboche unified constitutive model and ductile damage rule is proposed to simulate the mechanical responses of H11 subjected to low‐cycle fatigue (LCF). Accumulated inelastic hysteresis energy is adopted to demonstrate the impact on damage initiation and evolution rules. A series of tension and LCF experiments were conducted to investigate H11's mechanical properties and its deterioration processes. In addition, to deeply understand the deformation and damage mechanism, scanning electron microscope (SEM) investigations were performed on the fracture section of gauge‐length part of the specimen after failure. Furthermore, the parameters in both constitutive model and damage rule are identified based on experimental data. The comparison of the hysteresis loop of the first cycle and stable cycle with different strain amplitudes demonstrates that the Chaboche constitutive model provides high precision to predict the evolution of mechanical properties. Based on the reliable achieved constitutive model, LCF behaviour prediction with damage rule was executed successfully using FE model and gains a good agreement with the experiments. It is believed that the proposed FE method lays the foundation of structure analysis and rapid design optimization in further applications.  相似文献   

14.
The drive for increasing fuel efficiency and decreasing anthropogenic greenhouse effect via lightweighting leads to the development of several new Al alloys. The effect of Mn and Fe addition on the microstructure of Al‐Mg‐Si alloy in as‐cast condition was investigated. The mechanical properties including strain‐controlled low‐cycle fatigue characteristics were evaluated. The microstructure of the as‐cast alloy consisted of globular primary α‐Al phase and characteristic Mg2Si‐containing eutectic structure, along with Al8(Fe,Mn)2Si particles randomly distributed in the matrix. Relative to several commercial alloys including A319 cast alloy, the present alloy exhibited superior tensile properties without trade‐off in elongation and improved fatigue life due to the unique microstructure with fine grains and random textures. The as‐cast alloy possessed yield stress, ultimate tensile strength, and elongation of about 185 MPa, 304 MPa, and 6.3%, respectively. The stress‐strain hysteresis loops were symmetrical and approximately followed Masing behavior. The fatigue life of the as‐cast alloy was attained to be higher than that of several commercial cast and wrought Al alloys. Cyclic hardening occurred at higher strain amplitudes from 0.3% to 0.8%, while cyclic stabilization sustained at lower strain amplitudes of ≤0.2%. Examination of fractured surfaces revealed that fatigue crack initiated from the specimen surface/near‐surface, and crack propagation occurred mainly in the formation of fatigue striations.  相似文献   

15.
This paper introduces a method to determine the symmetric cycle fatigue limit of TA15 alloy at given confidence γ and survival probability P. It gives a general method to calculate the true survival probability of this material fatigue limit. The median and data of the LCF at γ = 95% and P = 99.9% are acquired after studying the LCF properties of aircraft construction material TA15 at the temperature of 25 and 250 °C. The strain–life curve, cyclic stress–strain curve and parameters of LCF are also achieved. These provide reference to analyze the reliability of aircraft construction and estimate the life.  相似文献   

16.
In the present work, the study of dynamic strain aging (DSA) in near α titanium alloy Timetal 834 is reported in terms of internal hardening variables (kinematic and isotropic hardening variable). Total strain controlled low cycle fatigue tests have been conducted in air at 300 °C and from 400 °C to 500 °C at a temperature interval of 25 °C at nominal strain rates of 6.67 × 10−3 s−1. The alloy exhibits gradual cyclic softening till failure at 300 °C, whereas, it exhibits initial cyclic softening followed by marked cyclic hardening from 400 °C to 500 °C. The cyclic hardening is attributed to DSA phenomena, resulting due to increase in isotropic stress component. The observed maximum peak stress ratio, lower fatigue life and minimum half-life plastic strain range at 450 °C indicates the maximum effect of DSA at that temperature. The fatigue life of tensile and compressive hold at 450 °C was observed to be inferior as compared to pure fatigue tests.  相似文献   

17.
Transmission electron microscopy (TEM) of a bimodal near-α titanium alloy revealed the existence of retained β phase layers and silicide precipitates at the α platelet boundaries inside transformed β grains. The β to α phase transformation accompanied by the precipitation of silicide resulted in the formation of a large number of dislocations at α platelet boundaries. Orientation relationships between silicide, β phase and α phase were also identified. However high-resolution TEM (HRTEM) revealed crystal mismatches between these phases generating high strains at α platelet boundaries. The strengthening effects of the platelet boundaries are discussed in terms of dislocations slip across the boundaries. The mechanism that governs the β to α phase transformation is also discussed.  相似文献   

18.
In the present study, the results of the monotonic tension tests and low cycle fatigue tests performed on aluminium alloy EN AW‐2024‐T3 under various operating temperatures are presented in order to assess the fatigue behaviour of the aluminium alloy under evaluated temperatures. Monotonic tests were performed to determine the influence of temperature on mechanical properties of the material. The aim of cyclic tests was to acquire the parameters required for Manson–Coffin equation in order to plot strain–fatigue life curves. Moreover, stress–strain behaviour of the alloy and the cyclic hardening behaviour were evaluated using Ramberg–Osgood equation. Finally, PSWT‐damage parameters for each temperature have been calculated for further investigation of the effects of the temperature on fatigue life using acquired data while taking the account of mean stress effect into calculations. Variations in the experimental data due to various test temperatures are presented for both monotonic and cyclic tests.  相似文献   

19.
Within the frame of this work, the mechanical behaviour of a bimodal ferritic 12Cr‐ODS steel as well as of a ferritic‐martensitic 9Cr‐ODS steel under alternating load conditions was investigated. In general, strain‐controlled low‐cycle fatigue tests at 550°C and 650°C revealed similar cyclic stress response. At elevated temperatures, the two steels manifest transitional stages, ie, cyclic softening and/or hardening corresponding to the small fraction of the cyclic life, which is followed by a linear cyclic softening stage that occupies the major fraction of the cyclic life until failure. However, it is clearly seen that the presence of the nano‐sized oxide particles is certainly beneficial, as the degree of cyclic softening is significantly reduced compared with non‐ODS steels. Besides, it is found that both applied strain amplitude and testing temperature show a strong influence on the cyclic stress response. It is observed that the degree of linear cyclic softening in both steels increases with increasing strain amplitude and decreasing test temperature. The effect of temperature on inelastic strain and hence lifetime becomes more pronounced with decreasing applied strain amplitude. When analysing the lifetime behaviour of both ODS steels in terms of inelastic strain energy calculations, it is found that comparable inelastic strain energies lead to similar lifetimes at 550°C. At 650°C, however, the higher inelastic strain energies of 12Cr‐ODS steel result in significant lower lifetimes compared with those of the 9Cr‐ODS steel. The strong degradation of the cyclic properties of the 12Cr‐ODS steel is obviously linked to the fact that the initial hardening response appears significantly more pronounced at 650°C than at 550°C. Finally, the obtained results depict that the 9Cr‐ODS steel offers higher number of cycles to failure at 650°C, compared with other novel ODS steels described in literature.  相似文献   

20.
The transient flow behaviour in Timetal 834 titanium alloy was studied in the temperature range between 400 °C and 475 °C by means of stress relaxation and reloading during tensile testing at a strain rate of 6.67 × 10−4 s−1. The increment in flow stress during reloading (Δσf) and the decrement in flow stress during stress relaxation (Δσr) were measured at different strains at each temperature. The observation of maximum value of Δσf and Δσr, normalized with respect to the Young's modulus at the corresponding temperature, confirmed that the maximum dynamic strain aging (DSA) effect in this alloy occurs at 450 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号