首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Two Al–Zn–Mg alloys with recrystallised and fibrous grain morphologies are studied with regards to the microstructure after solution heat treatment, cold water quenching and immediate room temperature deformation. It was found that the dislocation movement was localised in narrow slip bands cutting through the dislocation tangles. This observation is related to dynamic strain ageing and to macroscopic shear bands frequently observed in these alloys.  相似文献   

2.
This study was made on a fresh variety of Al–Li base alloy to investigate the role of ageing precipitates and microstructure dimensions in the fatigue crack growth resistance. The fatigue crack growth rate was measured in three different states of the material (i.e. base metal in T8 condition, friction stir weld and laser beam weld in full‐aged condition). Metallurgical analysis showed that the base metal in T8 temper is precipitation hardened by an equivalent amount of δ′ (AL3Li), T1 (AI2CuLi) and θ′ (AI2Cu) precipitates. The friction stir weld retained the morphology of strengthening precipitate; however, coarsening of Cu containing precipitates has occurred. On the other hand, laser beam weld showed a different type of CuAl phase morphology, which is characteristic of cast metal. The results of fatigue tests confirmed that fatigue crack growth resistance largely depends on microstructural features, specifically the strengthening phases. The fatigue crack resistance was in the order of base metal > laser beam weldment > friction stir weldment. The CuAl phase played a vital role in the crack closure of the laser beam weldment, thus enhancing the fatigue life as compared with the friction stir weldment, which was evident from the plot between log of da/dN (crack growth in each cycle) and log of ΔK (stress intensity range).  相似文献   

3.
4.
5.
6.
The objective of this work was to conduct a detailed assessment of the microstructure and mechanical properties of an emerging Al–Zn–Mg–Cu powder metallurgy (P/M) alloy known as Alumix 431D. A variety of techniques were considered including optical microscopy, X-ray diffraction, electron-probe micro-analysis, thermal dilatometry, and differential scanning calorimetry as well as apparent hardness, tensile testing, and bending fatigue. Alumix 431D exhibited many of the same attributes found in wrought counter parts such as 7075. A sintered density of approximately 99% of theoretical was achieved, indicating that the alloy was highly responsive to sintering. Once heat treated, a T6 hardness of 86 HRB and a room temperature ultimate tensile strength of 448 MPa were noted. Thermal analyses implied that the precipitation behaviour of Alumix 431D closely mimicked comparable 7XXX series wrought alloys and was largely premised on the precipitation of η-phase variants. Tensile properties of the alloy in a T1 temper were found to be relatively stable at temperatures up to 150 °C and 1000 h of exposure time. Those of T6 specimens degraded under the same exposure conditions to the point where equivalency with the T1 product was noted.  相似文献   

7.
One binary Zn–40Al and three Zn–40Al-based ternary alloys containing 1%, 3%, and 5% Cu were produced by permanent mold casting. Their fatigue behavior was investigated in 3.5% NaCl and 1% HCl solutions by a rotary bending fatigue test machine at a frequency of 33.3 Hz. The stress amplitude versus number of cycles to failure (S–N) curves of the alloys was plotted for both environments. Corrosion degradation factors of the alloys were determined. The corrosion environments reduced the fatigue strength and fatigue life of the alloys considerably. However, acid solution was found to be more detrimental for these alloys than the salt water. In addition, copper content was found to be less effective on the fatigue strength and fatigue life of the alloys in both salt water and acid solution than it was in air. Corrosion degradation factor of the alloys increased with increasing copper content up to approximately 3%, above which it decreased as the copper content increased. It was also shown that the fatigue data obtained from the monotectoid-based Zn–Al–Cu alloys in the corrosive environments obey the Basquin's law.  相似文献   

8.
The objective of this research was to investigate the fatigue strength of Ti–6Al–4V using an ultrasonic fatigue system. Fatigue testing up to 109 cycles under fully reversed loading was performed to determine the ultra-high cycle fatigue behavior of Ti–6Al–4V. Endurance limit results were compared to similar data generated on conventional servohydraulic test systems and electromagnetic shaker systems to determine if there are any frequency effects. Fatigue specimens were tested with and without cooling air to determine the effects of increased specimen temperature caused by internal damping due to cycling at a very high frequency. An infrared camera was also used to record specimen temperatures at various load levels. Results indicate that the effects of frequency, including internal heating, on the very high cycle fatigue behavior of Ti–6Al–4V are negligible under fully reversed loading conditions.  相似文献   

9.
Al–Sc and Al–Sc–Zr alloys containing 0.05, 0.1 and 0.5 wt.% Sc and 0.15 wt.% Zr were investigated using optical microscopy, electron microscopy and X-ray diffraction. The phase composition of the alloys and the morphology of precipitates that developed during solidification in the sand casting process and subsequent thermal treatment of the samples were studied. XRD analysis shows that the weight percentage of the Al3Sc/Al3(Sc, Zr) precipitates was significantly below 1% in all alloys except for the virgin Al0.5Sc0.15Zr alloy. In this alloy the precipitates were observed as primary dendritic particles. In the binary Al–Sc alloys, ageing at 470 °C for 24 h produced precipitates associated with dislocation networks, whereas the precipitates in the annealed Al–Sc–Zr alloys were free of interfacial dislocations except at the lowest content of Sc. Development of large incoherent precipitates during precipitation heat treatment reduced hardness of all the alloys studied. Growth of the Al3Sc/Al3(Sc, Zr) precipitates after heat treatment was less at low Sc content and in the presence of Zr. Increase in hardness was observed after heat treatment at 300 °C in all alloys. There is a small difference in hardness between binary and ternary alloys slow cooled after sand casting.  相似文献   

10.
The paper presents the results of the studies of the effect of temperature on the fracture behaviour of Al–Cu–Li alloy laser welds under low‐cycle fatigue loading. The mechanical properties and the microstructure of the welded joints without and after postweld heat treatment (PWHT) were investigated. The tensile strength and the low‐cycle fatigue resistance of the welded joints were studied at various test temperatures (20°C, 85°C and ? 60°C). It was been found that heating up to 85°C and cooling down to ?60°C reduced the maximum number of loading cycles of the welded joints after PWHT by 1.5–2.0 times compared with that at a test temperature of 20°C.  相似文献   

11.
effectively inhibits environmentally assisted fatigue crack propagation in 7075-T651 stressed during full immersion in low-chloride solution, as understood by hydrogen environment embrittlement and film rupture where -enhanced passivity reduces H production and uptake due to reduced crack hydrolysis, buffered pH, and a diffusion-barrier film. Inhibition is governed by the balance between crack tip strain rate and repassivation kinetics which establish the stability of the passive film. Inhibition is promoted by reduced loading frequency, reduced stress intensity range, increased crack tip concentration, and potentials at or anodic to free corrosion. The inhibiting effect of parallels that of , but molybdate effectiveness is shifted to a lower frequency regime suggesting the AlxMoyOz passive film is less stable against crack tip deformation. For high R loading at sufficiently low frequencies fully inhibits EFCP, quantified by reduced crack growth rate to that typical of ultra-high vacuum, reduction in crack surface facets typical of hydrogen embrittlement, and crack arrest. Chromate did not produce such complete inhibition. Methods exist to incorporate molybdate or Mo in self-healing coating systems, but the complex effects of mechanical and electrochemical variables must be understood for reliable-quantitative fatigue performance enhancement.  相似文献   

12.
The effect of artificial aging treatment on fatigue crack propagation (FCP) resistance of an Al–Cu–Mg alloy was investigated. It was shown that FCP rate of artificially aged alloy in the Paris region is lower than that of naturally aged alloy before and after thermal exposure. During the thermal exposure, tensile strength of artificially aged alloy remained unchanged. The results of three-dimensional atom probe (3DAP), transmission electron microscope (TEM) and differential scanning calorimeter (DSC) analysis showed that Cu–Mg co-cluster in artificially aged alloy are larger than that in natural aged alloy and can stably exist during thermal exposure. Size of Cu–Mg co-cluster was found to be the main factor influencing the thermal stability of Cu–Mg co-cluster and the FCP resistance.  相似文献   

13.
The microstructural features and the fatigue propensities of interior crack initiation region for very‐high‐cycle fatigue (VHCF) of a Ti–6Al–4V alloy were investigated in this paper. Fatigue tests under different stress ratios of R = ?1, ?0.5, ?0.1, 0.1 and 0.5 were conducted by ultrasonic axial cycling. The observations by SEM showed that the crack initiation of VHCF presents a fish‐eye (FiE) morphology containing a rough area (RA), and the FiE and RA are regarded as the characteristic regions for crack initiation of VHCF. Further examinations by TEM revealed that a layer of nanograins exists in the RA for the case of R = ?1, while nanograins do not appear in the FiE outside RA for the case of R = ?1, and in the RA for the case of R = 0.5, which is explained by the Numerous Cyclic Pressing model. In addition, the estimations of the fatigue propensities for interior crack initiation stage of VHCF indicated that the fatigue life consumed by RA takes a dominant part of the total fatigue life and the related crack propagation rate is rather slow.  相似文献   

14.
15.
The fatigue crack propagation characteristics of several rotor and wheel materials that are commonly used in rotating components of steam turbines were investigated. Particular emphasis was placed on the behaviour at near-threshold growth rates, ie below 10?5 mm/cycle, approaching the fatigue-crack propagation threshold, ΔKth. The lifetimes of the cracks of interest lie mostly in this region, and it is also the region where few data are available.The effects of load ratio on the fatigue crack growth rates were examined, as well as the tensile, Charpy V-notch and fracture toughness properties of the rotor and wheel materials. The relationship between fatigue crack propagation behaviour and fractographic features was examined. Fatigue crack growth rate data, da/dN vs stress intesity range ΔK, were fitted with a four parameter Weibull survivorship function. This curve fitting can be used for life estimation and establishment of ΔKth. The results show that load ratio and microstructure play a role in determining the fatigue crack threshold and fatigue crack growth behaviour.  相似文献   

16.
The flow behavior of Al–Cu–Mg–Ag alloy and its microstructural evolution during hot compression deformation were studied by thermal simulation test. The flow stress increased with increasing the strain rate, and decreased with increasing the deforming temperature, which can be described by a constitutive equation in hyperbolic sine function with the hot deformation activation energy 196.27 kJ/mol, and can also be described by a Zener–Hollomon parameter. The dynamic recrystallization only occurred at low Z values, which must be below or equal to a constant of 5.31 × 1013 s−1. With decreasing Z value, the elongated grains coarsed and the tendency of dynamic recrystallization enhanced. Correspondingly, the subgrain size increased and the dislocation density decreased. And the main soften mechanism of the alloy transformed from dynamic recovery to dynamic recrystallization.  相似文献   

17.
The effect of β-iron intermetallics and porosity on the tensile properties in cast Al–Si–Cu and Al–Si–Mg alloys were investigated for this research study, using experimental and industrial 319.2 alloys, and industrial A356.2 alloys. The results showed that the alloy ductility and ultimate tensile strength (UTS) were subject to deterioration as a result of an increase in the size of β-iron intermetallics, most noticeable up to β-iron intermetallic lengths of 100 μm in 319.2 alloys, or 70 μm in A356.2 alloys. An increase in the size of the porosity was also deleterious to alloy ductility and UTS. Although tensile properties are interpreted by means of UTS vs. log elongation plots in the present study, the properties for all sample conditions were best interpreted by means of log UTS vs. log elongation plots, where the properties increased linearly between conditions of low cooling rate–high Fe and high cooling rate–low Fe. The results are explained in terms of the β-Al5FeSi platelet size and porosity values obtained.  相似文献   

18.
Using scanning electron microscopy (SEM) and transmission electron microscopy (TEM), the microstructure of a new super-high-strength Al–Zn–Mg–Cu alloy (C912) has been investigated. Compared with some other high-strength aluminum alloys, the C912 alloy exhibits higher strength and good stress-corrosion resistance and its specific strength is even higher than some Al–Li alloys. Its potential for use in the Chinese AE100 airplane is discussed.  相似文献   

19.
In this paper, the influences of friction stir welding (FSW) and post‐weld heat treatment (PWHT) on the microstructures and tensile properties of Al–Cu–Li alloy are investigated. After FSW, strengthen loss occurred in the welding area. Remarkable softening occurs in the thermo‐mechanically affected zone (TMAZ) resulting from dissolution of Al3Li (δ′) phases. Recrystallization and precipitation of ultra‐fine δ′ phases take place in the nugget zone (NZ) that lightens the softening degree of this zone. A noteworthy enhancement in the hardness and tensile strength of the joint is achieved after T8 re­aging treatment (3% ? pre‐deformation, 30 h at 152 °C). However, re‐solution treatment coupled with re‐aging treatment leads to ductility deterioration in the joint because coplanar slip of coarse Al3Li phases induces severe stress concentration during plastic deformation.
  相似文献   

20.
Equal‐channel angular pressing (ECAP) has a considerable advantage in the preparation of bulk fine‐grained alloys. To investigate the effect of solid solution treatment (SST) on the microstructure and mechanic properties of an Al–Zn–Mg–Cu alloy after ECAP, a comparative study is conducted using experimental techniques. It is shown that ECAP processing introduces a strong grain refinement, while the SST induces precipitation of skeleton‐like second phases distributed discontinuously at the grain boundary and needle‐like second phases in the grain. In addition, SST can also improve significantly the fractions of both high angle grain boundaries and recrystallization. The {110}<001> texture is introduced and the polar density is reduced during SST. Microstructural evolution involves three typical characteristics, namely, shear bands, substructure, and precipitates. The corresponding mechanism of microstructure evolution is proposed, considering the effect of dislocations, precipitates, and grain boundaries. After SST, the improvement of strength and hardness is not obvious, but significant in plasticity by 33.3%. Different strengthening mechanisms are also examined during ECAP and subsequent SST.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号