首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Oh C  Padmabandu GG  Fry ES 《Applied optics》1995,34(18):3384-3391
Using a new technique based on the fanning of a coherent light beam in a photorefractive BaTiO(3) crystal, we have measured the angular distribution of forward light scattering by quartz fibers of radii from 15 to 30 μm. Data have been obtained over the angular range 0° to 0.3° and are in good agreement with theory.  相似文献   

2.
Within the range in which light penetration depth is approximately the same as or less than the diameter of the particles in the medium, particulate media with considerable absorption behave as two-dimensional, rough-surface structures. As penetration depth increases, a complicated transition between volume and surface effects is seen. For these media, low-order scattering sequences have small spatial extent, making observation of polarization characteristics difficult. We present an experimental technique to access the low-order scattered photons by artificially reinjecting them through total internal reflections. Using a dielectric layer in contact with the high-absorption medium, we are able to observe fourfold polarization asymmetry in backscattering from highly absorbant media. We discuss the origin of the polarization patterns in a ray-optics approximation and suggest possibilities for solving practical problems encountered in characterizing composites with appreciable absorption.  相似文献   

3.
This work extends modulated imaging, a recently developed technique based on the projection of structured light on a turbid medium that is able to measure optical properties of the high-scattering medium and perform tomography. We observe that structured light obliquely projected on a turbid medium undergoes a spatial shift during propagation. We propose a method to measure the spatial phase shift of a sinusoidal fringe pattern projected in a turbid medium, and we present a model derived from the diffusion approximation to describe the light propagation. Experimental validation by measurements performed on liquid phantoms is presented.  相似文献   

4.
The optical properties of one-dimensional gradient-refractive-index lens arrays based on liquid crystals are studied. We find that it is quite possible, using theoretical methods, to predict angular distributions of the light emanating from such arrays when they are illuminated with collimated monochromatic light. We compare four theoretical methods in relation to experiments. The experimental data and the model, based on a combination of eikonal methods and diffraction, are in close correspondence. Features such as maximal beam width and number of extrema in the angular light distribution are discussed and explained theoretically. We also studied dispersion effects, both experimentally and theoretically, with good agreement between the two.  相似文献   

5.
The mechanism and some symmetry properties of depolarization upon weak scattering of light from a class of random media were studied theoretically. Departing from the angular distribution of the degree of polarization, our derivations showed the mechanism that induces the change of polarization can be split into two parts of different nature. One is the vectorial effect that redistributes the original light components, and the other is the interaction effect of the medium that modulates the correlation properties of the incident field. We also showed that there is dependence of the angular distribution on the incident polarization state; i.e., the angular pattern and its symmetry depend on both the orientation and ellipticity of the incident polarization. Random light was analyzed in the space-frequency domain.  相似文献   

6.
A model describing the angular selectivity of noise gratings in volume holographic recording materials is presented. The noise grating is treated as an ensemble of superimposed, statistically distributed planar gratings. Rigorous coupled-wave analysis is used to treat reconstruction with various polarization states. The model accounts for material properties such as thickness change, absorption, and the angular distribution of scattered light within the recording medium. Results show good agreement with noise gratings that are experimentally formed in a thick cationic ring-opening photopolymer material.  相似文献   

7.
Abstract

We consider whether or not a short pulse of light carrying angular momentum will exert a torque when propagating through a transparent disc. The approach is based on the “Einstein-box” argument which we apply to discuss linear optical momentum in a medium. Two competing theories due to Minkowski and Abraham, at least superficially, suggest that the disc will not or will rotate. Our analysis suggests that the disc will rotate and that an experiment using optical tweezers should be able to detect the rotation.  相似文献   

8.
Subramanian H  Pradhan P  Kim YL  Liu Y  Li X  Backman V 《Applied optics》2006,45(24):6292-6300
Constructive interference between coherent waves traveling time-reversed paths in a random medium gives rise to the enhancement of light scattering observed in directions close to backscattering. This phenomenon is known as enhanced backscattering (EBS). According to diffusion theory, the angular width of an EBS cone is proportional to the ratio of the wavelength of light lambda to the transport mean-free-path length l(s)* of a random medium. In biological media a large l(s)* approximately 0.5-2 mm > lambda results in an extremely small (approximately 0.001 degrees ) angular width of the EBS cone, making the experimental observation of such narrow peaks difficult. Recently, the feasibility of observing EBS under low spatial coherence illumination (spatial coherence length Lsc < l(s)*) was demonstrated. Low spatial coherence behaves as a spatial filter rejecting longer path lengths and thus resulting in an increase of more than 100 times in the angular width of low coherence EBS (LEBS) cones. However, a conventional diffusion approximation-based model of EBS has not been able to explain such a dramatic increase in LEBS width. We present a photon random walk model of LEBS by using Monte Carlo simulation to elucidate the mechanism accounting for the unprecedented broadening of the LEBS peaks. Typically, the exit angles of the scattered photons are not considered in modeling EBS in the diffusion regime. We show that small exit angles are highly sensitive to low-order scattering, which is crucial for accurate modeling of LEBS. Our results show that the predictions of the model are in excellent agreement with the experimental data.  相似文献   

9.
Bargo PR  Prahl SA  Jacques SL 《Applied optics》2003,42(16):3187-3197
If a single optical fiber is used for both delivery and collection of light, two major factors affect the measurement of collected light: (1) the light transport in the medium that describes the amount of light that returns to the fiber and (2) the light coupling to the optical fiber that depends on the angular distribution of photons entering the fiber. We focus on the importance of the latter factor and describe how the efficiency of the coupling depends on the optical properties of the medium. For highly scattering tissues, the efficiency is well predicted by the numerical aperture (NA) of the fiber. For lower scattering, such as in soft tissues, photons arrive at the fiber from deeper depths, and the coupling efficiency could increase twofold to threefold above that predicted by the NA.  相似文献   

10.
We present a model for calculating the angular distribution of light, including polarization effects from multilayered inhomogeneous media, with an index of refraction mismatch between layers. The model is based on the resolution of the radiative transfer equation by the discrete ordinate method. Comparisons with previous simpler models and examples of simulations are presented.  相似文献   

11.
Xia J  Yao G 《Applied optics》2007,46(26):6552-6560
We measured angular-resolved diffuse reflectance in tissue samples of different anisotropic characteristics. Experimental measurements were compared with theoretical results based on the diffusion approximation. The results indicated that the angular distribution in isotropic tissue was the same as in isotropic phantoms. Under normal incidence, the measured angular profiles of diffuse reflectance approached the Lambertian distribution when the evaluation location was far away from the incident point. The skewed angular profiles observed under oblique incidence could be explained using the diffuse model. The anisotropic tissue structures in muscle showed clear effects on the measurements especially at locations close to the light incidence. However, when measuring across the muscle fiber orientations, the results were in good agreement with those obtained in isotropic samples.  相似文献   

12.
Mills K  Zalevsky Z  Leith EN 《Applied optics》2002,41(11):2116-2121
We present a generalized holography-based approach with improved spatial resolution for extracting images, viewed through a scattering medium. The various angular directions are encoded either with different wavelengths or by capturing their corresponding images in different time slots. The various encoded images are recorded on a digital hologram with a computer. A digital reconstruction, which includes demodulation of the carrier beam and then a proper decoding algorithm, yields resolved images. The principle is demonstrated by recording image-plane digital holograms. Combining the suggested approach with the first-arriving light technique may further improve the results.  相似文献   

13.
Chiu MH  Lai CW  Tan CT  Lai CF 《Applied optics》2008,47(29):5442-5445
We present a new microscopy technique that we call transmission angle deviation microscopy (TADM). It is based on common-path heterodyne interferometry and geometrical optics. An ultrahigh sensitivity surface plasmon resonance (SPR) angular sensor is used to expand dynamic measurement ranges and to improve the axial resolution in three-dimensional optical microscopy. When transmitted light is incident upon a specimen, the beam converges or diverges because of refractive and/or surface height variations. Advantages include high axial resolution (approximately 32 nm), nondestructive and noncontact measurement, and larger measurement ranges (+/- 80 microm) for a numerical aperture of 0.21 in a transparent measurement medium. The technique can be used without conductivity and pretreatment.  相似文献   

14.
Ishii K  Iwai T  Uozumi J  Asakura T 《Applied optics》1998,37(21):5014-5018
A free-path-length distribution function (FPDF) of multiply backscattered light is theoretically derived for a fractal aggregate of particles. An effective mean-free path-length l(D) is newly introduced as a measure of randomness analogous with a homogeneously random medium. We confirm the validity of the FPDF by demonstrating agreement between the dimensions designed for a particle distribution generated by a random walk based on the derived FPDF and estimated by the radius of gyration method. The FPDF is applied to Monte Carlo simulations for copolarized multiply backscattered light from the fractal aggregate of particles. It is shown that a copolarized intensity peak of enhanced backscattering in the far field decreases in accordance with theta(2-D) and has an angular width of lambda/l(D). This spatial feature of the backscattering enhancement corresponds to that of the copolarized intensity peak produced from a homogeneously random medium with a dimension of D = 3. As a result, the validity of the model for the fractal structure of particle aggregates and the applicability of the derived FPDF are confirmed by the numerical results.  相似文献   

15.
LP-MOCVD deposited ZnO:B thin films, post-etched by argon plasma processes, were investigated in this study in order to optimise the ZnO:B/p-layer interface when the ZnO:B is used as front electrode of p-i-n a-Si:H solar cells. At varying etching time different surface roughness was obtained and the evolution of the surface morphology was correlated with the texture characteristic and its scattering properties. Atomic force microscopy data were analysed and discussed together with the scattering properties, which are haze parameter and angular resolved scattering (ARS) distribution.The presence of several preferential scattering angles was hypothesized and a deconvolution approach was applied to each angular scattering curve. For each fixed preferential scattering angle θi we associated a Gaussian distribution of the scattered light amount related to a well-defined scattering surface. The different preferential scattering angles were correlated to different scattering phenomena, the modifications of the angular scattering curves well agreed with SEM and AFM images.It is well known that a:Si-H solar cells fabricated on MOCVD deposited ZnO:B substrates show poor FF and Voc values with good Jsc value. We demonstrated that only an effective sharp edge rounding off produced by an appropriately long plasma etching treatment is able to make MOCVD deposited ZnO:B perfectly suitable for high quality a-Si:H based devices.  相似文献   

16.
Laser trapping of particles in three dimensions can occur as a result of the refraction of strongly focused light through micrometre-sized particles. The use of this effect to produce laser tweezers is extremely common in fields such as biology, but it is only relatively recently that the technique has been applied to liquid crystals (LCs). The possibilities are exciting: droplets of LCs can be trapped, moved and rotated in an isotropic fluid medium, or both particles and defects can be trapped and manipulated within a liquid crystalline medium. This paper considers both the possibilities. The mechanism of transfer of optical angular momentum from circularly polarized light to small droplets of nematic LCs is described. Further, it is shown that droplets of chiral LCs can be made to rotate when illuminated with linearly polarized light and possible mechanisms are discussed. The trapping and manipulation of micrometre-sized particles in an aligned LC medium is used to provide a measure of local shear viscosity coefficients and a unique test of theory at low Ericksen number in LCs.  相似文献   

17.
In this work we derive expressions for the orbital angular momentum (OAM) density of light, for both symmetric and nonsymmetric optical fields, that allow a direct comparison between theory and experiment. We present a simple method for measuring the OAM density in optical fields and test the approach on superimposed nondiffracting higher-order Bessel beams. The measurement technique makes use of a single spatial light modulator and a Fourier transforming lens to measure the OAM spectrum of the optical field. Quantitative values for the OAM density as a function of the radial position in the optical field are obtained for both symmetric and nonsymmetric superpositions, illustrating good agreement with the theoretical prediction.  相似文献   

18.
Min SL  Gomez A 《Applied optics》1996,35(24):4919-4926
A technique is described and demonstrated to measure the size of spherical particles of known index of refraction by laser light scattering with an accuracy of better than 1%. This technique entails imaging the angular scattering intensity onto a photodiode array and applying a fast Fourier transform to the array output to obtain a frequency and phase corresponding to the number and angular position of the scattering lobes. Errors associated with particle trajectory effects and changes in the index of refraction are also considered. Results are not affected by the former, whereas variations of the refractive index by 2%, as may be typical, for example, of the transient heat up of a liquid hydrocarbon droplet, cause a deterioration of sizing accuracy to approximately 3%. The technique can in principle be applied in real time at data rates as high as 20-30 kHz with a modest equipment investment. Therefore, the measurement of droplet evaporation rates in dilute sprays with unprecedented accuracy appears to be feasible.  相似文献   

19.
The angular dependence of the reflectance from an isotropic medium with large, randomly oriented, ordered domains is investigated and compared with that of an isotropic medium in which the optical properties can be characterized by a scalar dielectric function. Employing average reflectance and transmittance theory, we demonstrate that an isotropic medium consisting of optically large ordered domains exhibits only a parallel-polarized reflectance minimum, not the formal zero expected at Brewster's angle. We attribute this result to the existence of nonzero cross-polarization terms despite the random orientation and the application of an incoherent averaging scheme, which is used to mimic traditional light sources.  相似文献   

20.
Hiding image data with a light-scattering medium is effective as a basic data protection technique. The hidden image data can be observed only by using a low-coherence interference technique and is thus protected from unauthorized access. Unlike an intensity-distributed object, a digital relief object has no intensity distribution, making it possible to hide its existence by using a dilute light-scattering medium. To reconstruct the digital relief object through the light-scattering medium, we developed phase-shifting digital holography with a low-coherence light source. The experimental performance, including the spatial resolution and phase error of the reconstructed image, is estimated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号