首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Immunological aspects of mammary involution   总被引:6,自引:0,他引:6  
Frequency of new intramammary infection is greatest during early involution, decreases during middle stages, and then increases prepartum. Penetrability of the teat canal, antibacterial properties of keratin, bacterial adherence, and epithelial sensitivity to toxins play a role in resistance. Leukocytes phagocytose bacteria and regulate expression of immune mechanisms, although their function is compromised during certain stages of involution. These cells increase to millions per milliliter as involution progresses and then decrease prepartum. Macrophages predominate in lacteal secretions, followed by lymphocytes and neutrophils. Lactoferrin, a major whey protein and iron chelator, is also associated with resistance to infection during the nonlactating period and may have immunomodulatory properties. Lacteal immunoglobulins increase throughout involution peaking prepartum and function by opsonizing bacteria, neutralizing toxins, and preventing bacterial adherence. Immunoglobulins are derived from blood or are produced locally by plasma cells present in the subepithelial mammary stroma. Plasma cells, lymphoid cells, and other protective leukocytes present in teat end tissues accumulate during infection and concentrations increase in response to local antigenic stimulation. Various aspects of the mammary immune system are compromised during periods of functional transition. Thus, vaccination, immunostimulation, accelerated involution, and intramammary devices are some methods now being tested to amplify local immunity and protect the gland from bacterial infection.  相似文献   

2.
3.
Lactoferrin concentration during involution of the bovine mammary gland.   总被引:5,自引:0,他引:5  
Electroimmunodiffusion assay was used to quantitate changes in lactoferrin concentration in mammary secretions during involution of the bovine mammary gland. Concentration of lactoferrin began to increase 2 to 4 days after cessation of regular milking and continued to increase linearly at a rate of 1.15 mg/ml per day as a result of increased net synthesis of lactoferrin during the first 14 to 21 days of involution. Maximum lactoferrin concentration (approximately 20 mg/ml) was attained after 3 to 4 wk of involution. These changes represent a 100-fold increase in lactoferrin concentration over that in normal milk. Maximum lactoferrin concentration was variable between cows. In some cows, the concentration of lactoferrin plateaued at less than 10 mg/ml after 10 days of involution. In others, much higher lactoferrin concentrations of 75 to 100 mg/ml were measured. Lactoferrin concentration decreased markedly prior to parturition and onset of lactation. The increase in lactoferrin concentration during mammary gland involution appeared to be related closely to the process of involution.  相似文献   

4.
The objective of this study was to investigate the effect of alpha-tocopherol deprivation on mammary gland involution and apoptosis in sheep. Two groups of four single lamb ewes were used. The control group received 100 mg/d of RRR-alpha-tocopherol supplementation and the experimental group received no vitamin E supplementation. After 3 mo of suckling, ewes were dried off, and blood samples from the jugular vein and tissue biopsies from the mammary gland were collected at d 1, 3, 5, and 8 after dry-off. The experimental group had lower plasma concentrations of alpha-tocopherol (1.8 vs. 4.2 micromol/L), lower glutathione peroxidase activity in erythrocytes, and higher concentration of malondialdehyde in plasma than the control group. Immunohistochemical analysis of tissue samples resulted in marked differences of bcl-2 and bax protein expressions during involution and between groups. The bax expression was decreased by alpha-tocopherol deprivation at 1, 3, and 5 d, but not at 8 d, while the bcl-2 score was higher only at 8 d (1.5 vs. 0.0 for experimental and control groups, respectively). As a result, the bcl-2 to bax ratios were increased for the experimental group at 1 and 8 d. During involution, apoptotic counts increased (from 0.12 to 4.06%), but no effects were detected in relation to bcl-2 to bax ratio and alpha-tocopherol. These results indicate that alpha-tocopherol can control bcl-2 expression, but not apoptosis in cells of the mammary gland during involution.  相似文献   

5.
Insulin-like growth factor I (IGF-I) is known to regulate mammary gland development. This regulation occurs through effects on both cell cycle progression and apoptosis. Our laboratory has studied the IGF-I-dependent regulation of these processes by using transgenic and knockout mouse models that exhibit alterations in the IGF-I axis. Our studies of transgenic mice that overexpress IGF-I during pregnancy and lactation have demonstrated that this growth factor slows the apoptotic loss of mammary epithelial cells during the declining phase of lactation but has minimal effects during early lactation on milk composition or lactational capacity. In contrast, our analysis of early developmental processes in mammary tissue from mice carrying a targeted mutation in the IGF-I receptor gene suggests that IGF-dependent stimulation of cell cycle progression is more important to early mammary gland development than potential anti-apoptotic effects. With both models, the effects of perturbing the IGF-I axis are dependent on the physiological state of the animal. The diminished ductal development that occurs in response to loss of the IGF-I receptor is dramatically restored during pregnancy, whereas the ability of overexpressed IGF-I to protect mammary cells from apoptosis does not occur if the mammary gland is induced to undergo forced involution. Data from our laboratory on the expression of IGF-signaling molecules in the mammary gland suggest that this effect of physiological context may be related to the expression of members of the insulin receptor substrate family.  相似文献   

6.
This study investigated the influence of chronic hyperthyroidism on mammary function in lactating rats and the effects on their pups. Thyroxine-treated (10 microg per 100 g body weight per day; hyperthyroid (HT)) or vehicle-treated rats were mated 2 weeks after the start of treatment and killed with their litters on days 7, 14 and 21 of lactation. Serum concentrations of triiodothyronine (T(3)) and tetraiodothyronine (T(4)) increased in thyroxine-treated rats. In HT mothers, serum prolactin decreased on day 7 and day 14 of lactation, whereas insulin-like growth factor I (IGF-I) and progesterone concentrations decreased, and corticosterone increased on day 7 of lactation. In HT pups, T(4) concentration increased on day 7 and day 14 of lactation, whereas T(3) increased only on day 14 of lactation, and growth hormone increased on day 7 of lactation. Mammary prolactin binding sites did not vary, but there was an increase in the binding sites in the liver on day 14 of lactation in thyroxine-treated rats. In an acute suckling experiment, thyroxine-treated rats released less oxytocin, growth hormone and prolactin and excreted less milk than did control rats. Mammary casein, lactose and total lipid concentrations in thyroxine-treated rats were similar to those of control rats on day 14 of lactation. Histological studies of the mammary glands showed an increased proportion of alveoli showing reduced or no lumina and cells with condensed nuclei on day 14 and day 21 of lactation; the TdT-mediated dUTP nick-end labelling (TUNEL) test revealed an increase in apoptosis in alveolar cells on day 21 of lactation in thyroxine-treated rats. Expression of SGP-2, a gene expressed during mammary involution, increased in thyroxine-treated rats on day 14 and day 21 of lactation, whereas expression of insulin-like growth factor binding protein 5, a proapoptotic signal, was unchanged. Bcl-2, which promotes survival of mammary gland epithelial cells was unchanged, whereas expression of IGF-I, which also promotes survival of mammary gland epithelial cells, increased on day 21 of lactation in thyroxine-treated rats. These results indicate that thyroxine treatment produces some milk stasis as a result of impairments in suckling induced release of oxytocin that may initiate the first stage of mammary involution, increasing apoptosis in a gland that is otherwise actively producing and secreting milk.  相似文献   

7.
8.
Isolates of Escherichia coli (n = 12), Klebsiella pneumoniae (n = 20), and Klebsiella oxytoca (n = 10) were used to challenge involuting mammary glands at 7 d of the dry period. Bacteria were selected for challenge on the basis of their ability to grow in a pooled source of dry cow secretion obtained at 21 d of involution. Challenge bacteria were classified as highly adapted (in vitro growth greater than 7 cfu log10/ml) or poorly adapted (growth less than 2 cfu log10/ml) for growth in dry cow secretion. Intramammary infusion of Escherichia coli, K. pneumoniae, and K. oxytoca resulted in 0, 40, and 30%, respectively, of quarters infected. Isolates highly adapted for growth in dry cow secretion caused 75% of K. pneumoniae and 67% of K. oxytoca experimental intramammary infections. Results indicated that the ability to overcome inhibitory properties of dry cow secretion was related to the establishment of K. pneumoniae and K. oxytoca intramammary infections in the dry gland. There was no evidence that growth of E. coli in dry cow secretion related to pathogenicity in the dry gland. Experimental challenge using multiple isolates did confirm the resistance of the involuting mammary gland to E. coli infection.  相似文献   

9.
There is considerable evidence to indicate the existence of local control of mammary gland involution, but the exact nature of this control has yet to be defined. Stanniocalcin-1 (STC-1) is a newly discovered mammalian hormone that seems involved in the lactation process and may be implicated in the control of involution. As a first step in investigating this hypothesis, the change in STC-1 levels in milk and serum was measured during drying off. Nine Holstein cows in late lactation were milked twice daily on half the gland, while the other half was left unmilked for a 14-d period. Milk and blood samples and mammary biopsies were taken on d −7, 1, 2, 7, and 14 relative to the onset of the nonmilking period. The concentrations of STC-1 in serum and milk were determined by RIA. The albumin concentration and proteinase activity of the milk were determined. Apoptosis of the mammary epithelium was quantified by terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay. Finally, the effects of milk on cellular activity and apoptosis were tested in vitro on mammary epithelial cells by measuring the turnover of tetrazolium salts and by counting the terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling-positive cells. The drying off of 2 quarters increased the milk production of the quarters that were milked by 30%. Milk proteinase activity and BSA and STC-1 concentrations increased in the nonmilked quarters, but remained unchanged in the milked quarters. Moreover, at d 2, the apoptotic rate of the mammary cells was higher in the nonmilked quarters than in the milked quarters (0.22 ± 0.04 vs. 0.07 ± 0.04%, respectively). Finally, in vitro experimentation demonstrated that mammary epithelial cells cultured in the presence of milk from involuting quarters had 3-fold more apoptotic cells as compared with those cultured in milk from the milked quarters at d 14. The metabolic rate was reduced by 14.6% for milk from d 7 and 23.6% for milk from d 14. Interestingly, the metabolic rate was negatively correlated with the STC-1 concentration in milk (r = −0.65). This study shows for the first time that STC-1 in milk is increased following milk stasis, although its exact role in the involution process remains to be clarified.  相似文献   

10.
Changes in fatty acid composition were determined for fat triglycerides from mammary secretions of 5 Holstein cows during the first 31 d of the nonlactating period. Proportions of short-chain (4:0 to 8:0) and medium-chain (10:0 to 14:0) fatty acids declined by about 50% during the first 3 d of involution, whereas proportions of stearic (18:0) and oleic acids (18:1) increased during the same period. Little change in proportions of those fatty acids occurred after d 3 of involution. Palmitic acid (16:0) was unchanged in proportion during involution. Fatty acid composition of mammary secretion triglycerides changed rapidly in the early nonlactating period, which may reflect a specific decline in de novo fatty acid synthesis in the involuting gland.  相似文献   

11.
The dry period is a nonlactating phase in which senescent mammary cells are regenerated, which is thought to optimize milk production in the subsequent lactation. In bovines, the dry period normally coexists with pregnancy and the lactogenic hormones delay mammary gland involution and impair the activation of immune system to fight the risk of intramammary infections. Conventionally, long dry periods of up to 60 d are required to allow sufficient mammary regeneration for full milk yield in the next lactation. The aim of this study was to evaluate the potential of mammary serum amyloid A3 (M-SAA3) as an activator of the involution of the mammary gland. One milligram of recombinant M-SAA3 and the corresponding negative controls (saline solution and lipopolysaccharide) were infused into the mammary gland via the teat canal, and mammary secretion samples were taken during the first 3 d after drying off to analyze metalloproteinase activity, somatic cell count, protein, and fat contents. Primary mammary gland epithelial cell cultures and bovine dendritic cells, obtained from necropsy tissue and blood, respectively, were incubated with and without M-SAA3 and cytokine expression was quantified. Last, the protective role of the M-SAA3 against infections was evaluated after a Staphylococcus aureus challenge. Matrix metalloproteinase 9 activity, a key protein that directly participates in the onset of the involution process, was greater in quarters treated with the M-SAA3. Protein content was increased in mammary secretions compared with control quarters. M-SAA3 increased cytokines directly related to innate immunity in both epithelial and dendritic cells and reduced the infection by Staphylococcus aureus.  相似文献   

12.
Successful lactation in multiparous dairy cattle relies on a well-managed dry period that allows the mammary gland to remodel and regenerate between lactations. Oxylipids are potent inflammatory mediators that are capable of regulating all aspects of inflammation. Although an oxylipid profile has been documented for periparturient and lactating cattle, little work has been done to define the profile of cows in the early dry period. Therefore, our group aimed to characterize the oxylipid profile in healthy cows during the transition into early mammary gland involution. Plasma samples were collected from 10 healthy Holstein dairy cows via coccygeal venipuncture 6 d before dry-off (d ?6), at dry-off (d 0), and 1 (d +1), 2 (d +2), 6 (d +6), and 12 (d +12) d after the dry-off date. Liquid chromatography-mass spectrometry was used to quantify select monounsaturated fatty acids, polyunsaturated fatty acids, and saturated fatty acids, whereas oxylipids were quantified using liquid chromatography-tandem mass spectrometry. The results of this study revealed a unique profile of pro- and anti-inflammatory oxylipids throughout the transition from late lactation into the dry period. Many compounds reached the highest concentrations of the study at d +1, d +2, or d +12, whereas others reached the lowest concentrations at d +12. The characterization of this profile allows for further understanding of the physiology of early mammary involution. Future studies should investigate how the oxylipid profile of early mammary involution may affect the health and productivity of dairy cows.  相似文献   

13.
《Journal of dairy science》2023,106(5):3719-3733
The monoamine serotonin (5-hydroxytryptamine, 5-HT) has been reported to inhibit milk protein gene expression and increase mammary epithelial cell (MEC) tight junction permeability after milk stasis. We hypothesized that increasing serotonin synthesis and signaling within the mammary epithelium before milk stasis would increase systemic and local involution markers, and downregulate the expression of milk protein and tight junction during involution, leading to more efficient tissue growth during the redevelopment phase. Herein, we examined the outcomes of increasing local mammary 5-HT synthesis before milk stasis on involution biomarkers, mammary gland microstructure, and gene and protein expression during the dry period. Multiparous Holstein cows were administered intramammary infusions (via the teat canal) of sterile water (CON, 4 mL/teat, n = 7) or 5-hydroxy-l-tryptophan (5-HTP, serotonin precursor, 20 mg/teat, n = 7) once daily for 5 d before dry-off (d 0). Blood, milk, and mammary secretions were collected and analyzed for components and metabolites. Mammary secretions were collected 12 h after the last milking and on d 1 to 4 during the dry period at 1200 h. Mammary gland biopsies were performed on d 4 (i.e., involution phase) and d 36 (i.e., redevelopment phase) of the dry period for histological and molecular evaluation. Milk protein and tight junction gene expression was quantified via real-time PCR. Hematoxylin and eosin staining, immunohistochemistry (Ki67), and immunofluorescence (serotonin, cleaved caspase 3) were performed to visualize tissue microstructure and to quantify serotonin intensity and cell turnover. Data were analyzed in SAS (SAS Institute Inc.) using 2-way ANOVA. After d 0, mammary secretions of 5-HTP cows had increased concentrations of 5-HT, lactoferrin, and bovine serum albumin. On d 1, 5-HTP cows had greater α-lactalbumin concentrations in plasma relative to CON. Serotonin intensity was increased in the mammary tissue of 5-HTP cows on d 4, relative to CON. On d 4, milk protein and tight junction gene expression was downregulated, MEC number was reduced, and cleaved caspase 3 protein was greater in mammary tissue of 5-HTP cows, relative to CON. On d 36, milk protein genes were upregulated, and the lumen:outer alveolar area and Ki67-positive cells were increased in the mammary tissue of 5-HTP cows, relative to CON. Amplifying serotonin signaling in the mammary epithelium before milk stasis at dry-off achieves greater apoptosis, leading to a reduction in MEC, allowing for greater cell proliferation, which results in more MEC during the redevelopment phase preceding the onset of lactation.  相似文献   

14.
Bovine mammary gland involution, as a part of the reproductive cycle in dairy cows, is a very important remodeling transformation of the mammary gland for the subsequent lactation. There is considerable incentive to accelerate mammary gland involution to improve udder health, shorten the dry period, and simplify the management process by reducing dietary changes. The complex process of mammary involution is characterized by morphological changes in the epithelial cells and mammary tissue, changes in the composition of mammary secretions, and changes in the integrity of tight junctions. Involution is facilitated by elements of the immune system and several types of proteases and is coordinated by various types of hormones. This review first describes the involution process and then argues for the need to accelerate it. Last, this review focuses on various intervention methods for accelerating involution. Our aim is to provide a comprehensive overview of bovine mammary gland involution as well as potential techniques and new opinions for dry cow management.  相似文献   

15.
The transition from lactation to the dry period in dairy cows is a period of high risk for acquiring new intramammary infections. This risk is reduced when the involution of the mammary gland is completed. Accordingly, approaches that speed up the involution process after drying-off could reduce the incidence of mastitis. The current study aimed to develop a biological response modifier that could be injected into cow teats to promote immune cell migration and speed up involution. Chitosan, a natural polysaccharide derived from chitin, is able to trigger host innate immunity. We developed 2 formulations made from either high- or low-viscosity chitosan. Both are liquid at room temperature but form a hydrogel at body temperature. In the first experiment, each udder quarter of 7 Holstein cows in late lactation was randomly assigned at drying-off to receive one of the following intramammary infusions: 2.5 or 5 mL of 5% (wt/vol) low-viscosity chitosan hydrogel, 5 mL of 5% high-viscosity chitosan hydrogel, or 5 mL of water. Milk (mammary secretion) samples were collected from each quarter on d ?4, ?1 (drying-off), 1, 3, 5, 7, and 10. Milk somatic cell counts and the concentrations of involution markers such as BSA, lactate dehydrogenase, and lactoferrin were measured in each sample. In comparison with the control, the chitosan hydrogel infusions significantly hastened the increases in somatic cell counts, BSA and lactoferrin concentrations, and lactate dehydrogenase activity in mammary secretions. No major differences between sources or volumes of chitosan were observed for the measured parameters. The compatibility of this approach with an internal teat sealant was verified in the second experiment. Each udder quarter of 8 Holstein cows was randomly assigned at drying-off to receive one of the following intramammary infusions: 5 mL of 2% low-viscosity chitosan hydrogel, 4 g of an internal teat sealant, a combination of sealant and chitosan, or 5 mL of water. Milk (mammary secretion) samples were collected from each quarter on d ?4, ?1 (drying-off), 5, and 10 to measure involution markers. These results suggest that chitosan hydrogel infusion hastened mammary gland involution and activate immune response, which may reduce the risk of acquiring new intramammary infections during the drying-off period. Those results were not affected by the presence of the teat sealant, showing that both approaches are fully compatible and could be used in combination.  相似文献   

16.
The risk for a dairy cow to acquire new intramammary infections is high during the transition from lactation to the dry period, because of udder engorgement and altered immune functions. Once the gland is fully involuted, it becomes much more resistant to intramammary infections. Therefore, strategies to depress milk yield before drying-off and accelerate the involution process after drying-off could be beneficial for udder health. The objective of this study was to assess the effect of photoperiod manipulation and melatonin feeding from 14 d before to 14 d after drying-off on the speed of the involution process. Thirty Holstein cows in late lactation were randomly allocated to one of the following treatments: (1) a long-day photoperiod (16 h of light: 8 h of darkness), (2) a short-day photoperiod (8 h of light: 16 h of darkness), and (3) a long-day photoperiod supplemented by melatonin feeding (4 mg/kg of body weight). Milk and blood samples were collected on d ?26, ?19, ?12, ?5, ?1, 1, 3, 5, 7, 10, and 14 relative to the last milking to determine concentrations of mammary gland involution markers and serum prolactin. Additional blood samples were taken around milking on d ?15, before the start of the treatments, and on d ?1, before drying-off, to evaluate the treatment effects on milking-induced prolactin release. The short-day photoperiod slightly decreased milk production and basal prolactin secretion during the dry period. The milking-induced prolactin surge was smaller on d ?1 than on d ?15 regardless of the treatments. Lactoferrin concentration, somatic cell count, and BSA concentration as well as matrix metalloproteinase-2 and -9 activities increased in mammary secretions during the first 2 wk of the dry period, whereas milk citrate concentration and the citrate:lactoferrin molar ratio decreased. The rates of change of these parameters were not significantly affected by the treatments. The long-day photoperiod supplemented by melatonin feeding did not affect milk production, prolactin secretion, or mammary gland involution. Under the conditions in this study, photoperiod modulation and melatonin feeding did not appear to affect the rate of mammary gland involution.  相似文献   

17.
Milk stasis triggers local stimuli, which make the tight junctions leak and trigger involution. The aim of the study was to test the hypothesis that casein hydrolyzates compromise tight junction integrity and dry-off milk secretion in dairy cows. Six repeated doses of casein hydrolyzates after each milking during 3 d caused drastic changes in mammary secretion and composition, which were associated with irreversible cessation of milk secretion. No such changes were recorded in the control glands that had been treated with nonhydrolyzed casein. Treatment with casein hydrolyzates disturbed tight junction integrity within 8 h (as indicated by changes in Na+ and K+ concentrations), reduced the concentrations of lactose precipitously, activated the plasmin activator-plasminogen-plasmin system, and induced the secretion of immunoglobulin type G and lactoferrin. At the end of the 3-d treatments, we stopped milking the experimental and control glands. Milk composition 19 d later was similar in the experimental and control glands and was consistent with the composition expected in fully involuted glands. We conclude that casein hydrolyzates are among the milk-borne factors that cause the disruption of tight junction integrity and induce involution in cows. The process induced by casein hydrolyzate was more rapid and synchronized than the involution induced at drying-off.  相似文献   

18.
This study was designed to evaluate the effects of a single intramammary infusion of Panax ginseng extract on cell proliferation and death mechanism in bovine mammary gland during early involution. Eight mammary quarters from six non-pregnant cows in late lactation were infused with 10 ml of ginseng solution (3 mg/ml), six quarters were treated with 10 ml of placebo (vehicle alone) and six quarters were maintained as uninoculated controls. Milking was interrupted after infusion. Animals included in the three groups were slaughtered 7 d after inoculation and samples for histological analysis were taken. Morphometric analysis showed a significant increase in percentages of mammary tissue area occupied by stroma in ginseng-treated quarters compared with controls. A significant increase of immunostained area for bax protein and active caspase-3 was observed in ginseng-treated quarters compared with controls, whereas no differences were observed for bcl-2 immunostaining. Expression of bax mRNA was significantly higher in ginseng-treated quarters than in controls. The bax/bcl-2 ratio indicated a significant predominance of bax over bcl-2 mRNA expression in ginseng-treated quarters compared with controls. The rise of epithelial and stromal cell apoptosis in situ by TUNEL was more marked in quarters treated with ginseng than in controls. Ginseng inoculation had no effect on the number of epithelial and stromal proliferating cells labelled with Ki-67 antibody. Ratio of apoptotic to proliferating cells was higher in quarters treated with ginseng compared with controls, indicating a net loss of cells in parenchymal components. Also, the intramammary inoculation of ginseng extract at drying off increased the rate of mammary cell apoptosis without inhibiting cell proliferation. Taken together, these changes are indicative of mammary regression enhancement during early involution.  相似文献   

19.
Murine mammary tissue homogenates obtained during pregnancy, lactation, and involution were assayed for activities of two lysosomal marker enzymes, acid phosphatase, and N-acetyl-beta-D-glucosaminidase. Acid phosphatase activity per milligram protein was relatively constant through pregnancy and lactation, although a decrease was detected at parturition. Acid phosphatase activity per milligram deoxyribonucleic acid was also stable through pregnancy and lactation except for a peak of activity during lactogenesis. Acid phosphatase activity per gram wet weight also remained stable during pregnancy and lactation, but activity was significantly higher during lactation than pregnancy. Glucosaminidase activity, whether expressed as milligrams deoxyribonucleic acid of milligrams protein, tended to decrease during pregnancy, decreased further with lactogenesis, and remained significantly lower throughout lactation. Glucosaminidase activity per gram wet weight increased as pregnancy progressed and slowly decreased through lactogenesis to midpregnancy levels, which remained stable throughout the remainder of lactation. Both acid phosphatase and glucosaminidase activities were slightly higher at the end of lactation, and both decreased within 24 h of weaning. Significant increases in activities of both enzymes were observed from d 1 to 4 of involution.  相似文献   

20.
The level of gelatinases in surrounding body fluids of actively remodelling tissue is indicative of basement membrane and extracellular matrix degradation under various physiological and pathological circumstances. To elucidate the association of gelatinase with mammary tissue remodelling during gradual or acute involution, in the first trial, goats milked twice daily (lactation) and goats receiving decreased milking frequency (involution) served to provide a total of 12 milk samples and 11 mammary secretion samples, respectively. In the second trial, 6 cows served to provide samples of dry secretion in 3 consecutive weeks immediately following milk stasis. Gelatin zymography was applied for gelatinase phenotyping and quantification on milk, plasma and the degranulation medium/lysate of milk somatic cells. Results indicated that the most prevalent gelatinase subtype switched from gelatinase A in milk to gelatinase B in involution secretion. Mammary secretion of goats during involution contained marginally higher protein level, significantly lower casein ratio and greater specific capacity of gelatinase B compared with those of milk during lactation. Specific capacities of gelatinases A and B in plasma of goats were similar during lactation and involution, while gelatinase B capacity in degranulation medium/lysates based on unit number of goat somatic cell was significantly higher during involution than during lactation. Milk stasis of cows induced a significant increase in specific capacity of gelatinase B, but not gelatinase A, of dry secretion up to the third week. Results of both trials agree that regional selective accretion of gelatinase B in milk might have played a role in mammary tissue remodelling during involution induced by either decreasing milking frequency or milk stasis. It is suggested that infiltrated polymorphonuclear neutrophils are one of the potential contributors responsible for the accumulation of gelatinase B during involution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号