首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of regucalcin, a calcium-binding protein isolated from rat liver cytoplasm, on ATP-dependent calcium transport in the plasma membrane vesicles of rat liver was investigated. (Ca(2+)- Mg2+)-ATPase activity in the liver plasma membranes was significantly increased by the presence of regucalcin (0.1-0.5 microM) in the enzyme reaction mixture. This increase was completely inhibited by the presence of sulfhydryl group modifying reagent Nethylmaleimide (5.0 mM NEM) or digitonin (0.04%), which can solubilize the membranous lipids. When ATP-dependent calcium uptake by liver plasma membrane vesicles was measured by using 45CaCl2, the presence of regucalcin (0.1-0.5 microM) in the reaction mixture caused a significant increase in the 45Ca2+ uptake. This increase was about 2-fold with 0.5 microM regucalcin addition. An appreciable increase was seen by 5 min incubation with regucalcin addition. The regucalcin-enhanced ATP-dependent 45Ca2+ uptake by the plasma membrane vesicles was completely inhibited by the presence of NEM (5.0 mM) or digitonin (0.04%). These results demonstrate that regucalcin activates (Ca(2+)-Mg2+)-ATPase in the liver plasma membranes and that it can stimulate ATP-dependent calcium transport across the plasma membranes.  相似文献   

2.
Rat brain microsomes accumulate Ca2+ at the expense of ATP hydrolysis. The rate of transport is not modulated by the monovalent cations K+, Na+, or Li+. Both the Ca2+ uptake and the Ca(2+)-dependent ATPase activity of microsomes are inhibited by the sulfated polysaccharides heparin, fucosylated chondroitin sulfate, and dextran sulfate. Half-maximal inhibition is observed with sulfated polysaccharide concentrations ranging from 0.5 to 8.0 micrograms/ml. The inhibition is antagonized by KCl and NaCl but not by LiCl. As a result, Ca2+ transport by the native vesicles, which in the absence of polysaccharides is not modulated by monovalent cations, becomes highly sensitive to these ions. Trifluoperazine has a dual effect on the Ca2+ pump of brain microsomes. At low concentrations (20-80 microM) it stimulates the rate of Ca2+ influx, and at concentrations > 100 microM if inhibits both the Ca2+ uptake and the ATPase activity. The activation observed at low trifluoperazine concentrations is specific for the brain Ca(2+)-ATPase; for the Ca(2+)-ATPases found in blood platelets and in the sarcoplasmic reticulum of skeletal muscle, trifluoperazine causes only a concentration-dependent inhibition of Ca2+ uptake. Passive Ca2+ efflux from brain microsomes preloaded with Ca2+ is increased by trifluoperazine (50-150 microM), and this effect is potentiated by heparin (10 micrograms/ml), even in the presence of KCl. It is proposed that the Ca(2+)-ATPase isoforms from brain microsomes is modulated differently by polysaccharides and trifluoperazine when compared with skeletal muscle and platelet isoforms.  相似文献   

3.
1. A subcellular fractionation procedure for bovine adrenal glands was designed with the aim to study the biochemical properties of Ca2+ stores in chromaffin cells. 2. The thapsigargin-sensitive compartment of Ca2+ stores was found to be highly enriched in a light microsomal fraction (LMF) on a 15-30% linear sucrose gradient, and was found to be essentially devoid of contamination by plasma, mitochondrial or secretory granule membranes. 3. A Ca(2+)-pumping ATPase was identified in this LMF as a 97 kDa protein forming an acid-stable, Ca(2+)-dependent, thapsigargin-sensitive phosphorylated intermediate upon incubation with [gamma-32P]ATP, suggesting this protein to represent a SERCA-3 isoform of Ca2+ ATPases. 4. A major 162 kDa protein, previously demonstrated in the isolated chromaffin cells, was enriched in the LMF, distributing on sucrose gradients in parallel with the thapsigargin-sensitive Ca2+ uptake. 5. LMF appears to represent a part of the thapsigargin-sensitive Ca2+ store of chromaffin cells, and should be useful for further studies of the store properties at the subcellular and molecular level.  相似文献   

4.
Calcium transport by the Na+/Ca2+ exchanger was measured in plasma membranes vesicles purified from rat brain and in primary rat cortical cell culture. Sodium-loaded vesicles rapidly accumulate Ca2+ via Na+/Ca2+ exchange (Na+(i)-dependent Ca2+ uptake). Extravesicular zinc inhibited Na+/Ca2+ exchange as evidenced by a reduction of the initial velocity of Ca2+ uptake. Significant inhibition of Ca2+ uptake was seen at concentrations of zinc as low as 3 microM. Lineweaver-Burk analysis of the data was consistent with noncompetitive inhibition with respect to extravesicular Ca2+ concentration. The Ki for zinc inhibition of Ca2+ uptake determined from a Dixon plot was 14.5 microM. This is within the range of zinc concentrations thought to be obtained extracellularly after excitation. When vesicles were preloaded with Ca2+, extravesicular zinc also inhibited reversal of Na+/Ca2+ exchange (Na+(i)-dependent Ca2+ release) although its potency was much less: concentrations of > or = 30 microM zinc were required. Zinc inhibition of Ca2+ release was not Na+ dependent. Na+(i)-dependent calcium uptake by rat cortical cells in primary culture also was inhibited by zinc. The extent of inhibition was similar to that seen for inhibition of Na+(i)-dependent Ca2+ uptake in membrane vesicles, but the potency was less. The results suggest that Ca2+ transport by the Na+/Ca2+ exchanger is inhibited by concentrations of zinc thought to be attained extracellularly after excitation.  相似文献   

5.
An ATP-dependent calcium (Ca2+) sequestration activity was demonstrated in membrane vesicles prepared from the human term placenta. Microsomal and brush border membrane fractions accumulated Ca2+ within a vesicular space by a saturable process requiring Mg2+ and ATP. The "uptake" activity was enriched six-fold in a microsomal membrane fraction and was only 1.5-fold enriched in purified brush border membranes compared to the activity present in the filtered homogenate. Mitochondrial inhibitors such as azide and oligomycin did not inhibit Ca2+ uptake in these preparations. The process was temperature dependent and displayed Michaelis-Menten-like kinetics with respect to free Ca2+ concentrations. At 30 degrees C, the Vmax was 1.05 nmole/mg/min; Km = 74 nM for free Ca2+ in the microsomal fraction. Oxalate and phosphate enhanced uptake in both fractions. Ca2+ uptake activity was not associated with Ca2+-stimulated ATPase, alkaline phosphatase, or other brush border markers during cell fractionation. The characteristics of the Ca2+ uptake process contrasted sharply with those of Ca2+-stimulated ATPase, and a Ca2+-stimulated, Mg2+-dependent ATPase activity could not be identified in these membrane vesicle preparations.  相似文献   

6.
The Ca2+-ATPase activity of isolated membranes and purified plasma membrane ATPase from pig brain was measured in the presence of specific inhibitors. The inhibition of the enzymatic activity by vanadate presents a lower affinity in microsomes than in the synaptic plasma membrane vesicles, showing K0.5 of 0.4 and 0.2 microM, respectively. The purified enzyme showed a higher sensitivity to vanadate with a K0.5 of 0.10 microM. Thapsigargin (Tg) and 2,5-di(tert-butyl)-1,4-benzohydroquinone (BHQ) were stronger inhibitors of the Ca2+-ATPase activity in microsomes than in the synaptic membrane vesicles. The activity of the purified enzyme was not affected by Tg and only partially by BHQ. Cyclopiazonic acid inhibited the enzymatic activity in all fractions, being more sensitive in microsomes. The microsome preparation incorporated 32P from [gamma-32P]ATP into two main proteins that appear at approx 110,000 and 140,000. According to the inhibition pattern, the lower phosphorylated band was identified as the sarco(endo)plasmic reticulum Ca2+-ATPase, being in a higher percentage than the upper band. Synaptic membrane vesicles also incorporated radioactive 32P into two protein bands. The 140,000 protein (upper band) shows the typical behavior of the purified plasma membrane Ca2+-ATPase, being more abundant in this preparation than the organellar Ca2+-pump (lower band). This study highlights the heterogeneous nature of the Ca2+-ATPase activity measured in brain membrane fractions.  相似文献   

7.
The effect of cAMP on a ryanodine-sensitive Ca2+ release from microsomal vesicles of rat parotid acinar cells was studied. After a steady state of ATP-dependent 45Ca2+ uptake into the vesicles, cAMP was added to the medium with thapsigargin (TG) to block a reuptake of 45Ca2+. The addition of cAMP (1.0 mM) with TG released about 10% of the 45Ca2+ that had been taken up. The cAMP-induced 45Ca2+ release was strongly inhibited by pretreatment of the vesicles with 500 microMM ryanodine. Preincubation with cAMP (1 mM) abolished ryanodine (10 microM)-induced 45Ca2+ release. The presence of a specific inhibitor of cAMP-dependent protein kinase (PKA) H-89 (10 microMM) inhibited the cAMP-induced 45Ca2+ release. These results indicate that in rat parotid acinar cells, cAMP can activate a ryanodine-sensitive Ca2+ release mechanism in the endoplasmic reticulum and that this activation is via a PKA-dependent process.  相似文献   

8.
OBJECTIVE: The calcium (Ca) pump of cardiac sarcoplasmic reticulum (SR) membranes is vulnerable to oxidation and hence likely to be damaged by chlorinated compounds, specifically hypochlorite (NaOCl) and monochloramine (NH2Cl), the most potent oxidants produced upon neutrophil activation. This could occur during prolonged ischemia or myocardial infarction when tissue levels of catecholamines are high. Phospholamban (PLN), the phosphorylatable regulator of the Ca pump, plays a central role in the effects of beta-adrenergic agonists on the heart. The purpose of this study was to investigate a possible role of PLN in determining the pump's sensitivity to NaOCl and NH2Cl. METHODS: Ca-uptake and Ca(2+)-ATPase activities in purified phosphorylated and control canine cardiac microsomes, incubated at increasing concentrations of NaOCl or NH2Cl, were related to the extent of PLN phosphorylation by protein kinase A, which was quantitated by PhosphorImager analysis. RESULTS AND CONCLUSIONS: Our data indicate that microsomal phosphorylation protects the Ca pump fully against 10 microM NaOCl or NH2Cl, which inhibit Ca-uptake by 21-41% when assayed at 25 or 37 degrees C and saturating Ca2+ in unphosphorylated microsomes, and protects partially at higher oxidant concentrations. The protective effect of protein kinase A on Ca-uptake is proportional to the amount of phosphorylated PLN. No comparable protection against similar oxidative damage of the Ca pump is observed when light fast skeletal muscle microsomes, which lack PLN, are incubated under conditions favorable for phosphorylation nor when PLN's inhibition of the cardiac Ca pump is relieved by proteolytic cleavage of its cytoplasmic domain. Our findings contribute toward an understanding of possible endogenous protective mechanisms that may promote calcium homeostasis in myocardial cells in inflammatory states associated with neutrophil activation and may suggest an approach toward development of protective strategies against oxidative damage in the heart.  相似文献   

9.
Taurine is known to increase ATP-dependent calcium ion (Ca2+) uptake in retinal membrane preparations and in isolated rod outer segments (ROS) under low calcium conditions (10 microM) (Pasantes-Morales and Ordó?ez, 1982; Lombardini, 1991). In this report, ATP-dependent Ca2+ uptake in retinal membrane preparations was found to be inhibited by 5 microM cadmium (Cd2+), suggesting the involvement of cation channel activation. The activation of cGMP-gated cation channels, which are found in the ROS, is a crucial step in the phototransduction process. An inhibitor of cGMP-gated channels, LY83583, was found to inhibit taurine-stimulated ATP-dependent Ca2+ uptake but had no effect on ATP-dependent Ca2+ uptake in the absence of taurine, indicating that taurine may be increasing ATP-dependent Ca2+ uptake through a mechanism of action involving the opening of cGMP-gated channels. The activation of cGMP-gated channels with dibutyryl-cGMP and with phosphodiesterase inhibition using zaprinast caused an increase in ATP-dependent Ca2+ uptake in isolated ROS, but not in taurine-stimulated ATP-dependent Ca2+ uptake. LY83583 had the same effects in isolated ROS as in retinal membrane preparations. Another inhibitor of cGMP-gated channels, Rp-8-Br-PET-cGMPS, produced the same pattern of inhibition in isolated ROS as LY83583. Thus, there appears to be a causal link between taurine and the activation of the cGMP-gated channels in the ROS under conditions of low calcium concentration, a connection that suggests an important role for taurine in the visual signalling function of the retina.  相似文献   

10.
To characterize the calcium (Ca2+)-releasing effects of histamine and GTP gamma S, the drug-induced tension developments were measured in beta-escin-treated skinned longitudinal smooth muscle of guinea pig ileum. Intracellular Ca2+ stores were loaded with Ca2+ by incubating the muscle for 10 min in a Ca(2+)-containing solution. Histamine (10-100 microM), applied after Ca(2+)-loading, produced a transient rise in tension. The effect of histamine was not preserved after treatment with 20 mM caffeine, a Ca(2+)-store releaser. The effect of histamine was potentiated by GTP; inhibited by GDP beta S, an antagonist of GTP for binding to G-proteins; or heparin, an antagonist of inositol 1,4,5-trisphosphate (IP3) for binding to its receptor; and mimicked by IP3. When GTP gamma S (20 microM) was applied and continued to be present for 15 min, a transient rise in tension followed by a small, sustained rise in tension was elicited. The effect of GTP gamma S was completely inhibited by GDP beta S. The initial, transient component of the biphasic GTP gamma S response was abolished or markedly inhibited after treatment with caffeine, heparin or the calcium ionophore A23187. The present results suggest that histamine and GTP gamma S cause a release of Ca2+ from caffeine-sensitive stores which is mediated by IP3 formed through a G-protein-coupled mechanism. The GTP gamma S-induced Ca2+ release is not considered to involve such an IP3-independent process as described in chemically-skinned arterial muscle.  相似文献   

11.
The 53 kDa glycoprotein from sarcoplasmic reticulum was shown to be protected from proteolysis by trypsin, V8 proteinase and proteinase K in intact vesicles yet readily digested in the presence of the non-denaturing detergent C12E8. Competitive ELISAs with a library of seven monoclonal antibodies raised against the 53 kDa glycoprotein showed that the epitopes for these antibodies were only accessible in C12E8 solubilised and not intact sarcoplasmic reticulum. When the monoclonal antibodies against the 53 kDa glycoprotein were assessed for their effect on the uptake of Ca2+ by sarcoplasmic reticulum no effect was detected; neither were these antibodies able to augment the inhibitory influences of anti-(Ca(2+)-Mg2+)-ATPase monoclonal antibodies on Ca2+ uptake. These data indicate that the 53 kDa glycoprotein is located in the lumen of the sarcoplasmic reticulum.  相似文献   

12.
The effect of light on calcium transport in mammalian sperm mitochondria and plasma membrane was studied. Digitonine-treated spermatozoa and plasma membrane vesicles were irradiated with an HeNe laser at various powers and energy doses and Ca2+ uptake was measured by the filtration method. It was found that there is an accelerated Ca2+ uptake by the mitochondria after low power HeNe irradiation and inhibition after high power. The flux of Ca2+ from the mitochondria was also examined and was found to be unaffected by the HeNe light. The ATP-dependent Ca2+ uptake by the bovine plasma membrane vesicles was not changed by the HeNe irradiation.  相似文献   

13.
The effects of niflumic acid on whole-cell membrane currents and mechanical activity were examined in the rat portal vein. In freshly dispersed portal vein cells clamped at -60 mV in caesium (Cs+)-containing solutions, niflumic acid (1-100 microM) inhibited calcium (Ca2+)-activated chloride currents (IC1(Ca)) induced by caffeine (10 mM) and by noradrenaline (10 microM). In a potassium (K+)-containing solution and at a holding potential of - 10 mV, niflumic acid (10-100 microM) induced an outward K+ current (IK(ATP)) which was sensitive to glibenclamide (10-30 microM). At concentrations < 30 microM and at a holding potential of -2 mV, niflumic acid had no effect on the magnitude of the caffeine- or noradrenaline-stimulated current (IBK(Ca)) carried by the large conductance, Ca(2+)-sensitive K+ channel (BKCa). However, at a concentration of 100 microM, niflumic acid significantly inhibited IBK(Ca)) evoked by caffeine (10 mM) but not by NS1619 (1-(2'-hydroxy-5'-trifluoromethylphenyl)-5-trifluoromethyl-2(3 H) benzimidazolone; 20 microM). In Cs(+)-containing solutions, niflumic acid (10-100 microM) did not inhibit voltage-sensitive Ca2+ currents. In intact portal veins, niflumic acid (1-300 microM) inhibited spontaneous mechanical activity, an action which was partially antagonised by glibenclamide (1-10 microM), and contractions produced by noradrenaline (10 microM), an effect which was glibenclamide-insensitive. It is concluded that inhibition of ICl(Ca) and stimulation of IK(ATP) both contribute to the mechano-inhibitory actions of niflumic acid in the rat portal vein.  相似文献   

14.
Inositol 1,4,5-trisphosphate (InsP3) is a second messenger responsible for the rapid and discontinuous release of Ca2+ from intracellular stores. In this study, the effects of the sulfhydryl reagent thimerosal were investigated on Ca2+ mobilization and on InsP3 binding. Thimerosal was shown to release Ca2+, in a dose-dependent manner, with an EC50 of 135.8 +/- 5.2 microM, from bovine adrenal cortex microsomes. Thimerosal-induced Ca2+ release was not prevented by heparin (250 micrograms/ml), ruling out a participation of InsP3 receptor in that effect. The slow rate of thimerosal-induced Ca2+ release rather suggested an inhibition of microsomal Ca2+ ATPase. At submaximal concentration, thimerosal (100 microM) was also shown to potentiate the release of Ca2+ induced by InsP3. Dose-response experiments revealed that thimerosal enhanced the apparent affinity of InsP3 by a factor 2.21 +/- 0.28, without modifying the maximal amount of Ca2+ released by InsP3. Thimerosal also enhanced, in a dose-dependent manner, [3H]InsP3 binding to adrenal cortex microsomes (EC50 = 43.3 +/- 7.6 microM). A similar effect was also observed on [3H]InsP3 binding to solubilized receptors, suggesting a direct modification of the receptor protein by thimerosal. The effects of thimerosal on Ca2+ release and [3H]InsP3 binding were abolished in the presence of the reducing agent dithiothreitol (1 mM), suggesting a modification by thimerosal of specific thiol groups on these microsomal proteins. Scatchard analysis revealed that thimerosal (100 microM) increased InsP3 receptor affinity by 1.87 +/- 0.26-fold. Kinetic analysis indicated that this increased affinity was due to an enhancement of InsP3 association rate constant. The concomitant increases of binding affinity and Ca2+ releasing potency suggest that the high affinity state of InsP3 receptor is a functional state.  相似文献   

15.
Using carbachol contracture as the experimental model for testing the properties of the intracellular calcium store in intact tissue and 45Ca2+ accumulation in the chemically skinned by digitonin smooth muscle cells isolated from oestrogen-dominated rat uterus the evidence for the presence of Mg2+, ATP-dependent Ca2+ pump in the non-mitochondrial store has been found which is supposed to play a key role in the process of refilling' of the store on the cytoplasmic level. The experiments performed on intact muscle showed that the functional activity of the carbachol-releasable Ca2+ store is critically dependent on Ca2+ entry. It is found that Ca2+ entry via voltage operated Ca2+ channels or on the Na(+)-Ca2+ exchange was needed to refill the store in this tissue. However, when Ca2+ extrusion systems located in the plasma membrane were inhibited by La3+, the store retained its ability to discharge and reaccumulate Ca2+ released on the regular basis suggesting the presence of the energy-dependent Ca2+ accumulating system in the store. The process of the store refilling was totally inhibited by cyclopiazonic acid. Chemically skinned uterine smooth muscle cells demonstrated the presence of Mg2+, ATP-dependent accumulation of Ca2+ in the non-mitochondrial (ruthenium red insensitive) intracellular store(s) potentiated by Ca(2+)-precipitating anions (potassium oxalate and phosphate), in a time- and concentration dependent way which was inhibited by Ca(2+)-ionophore A 23187 (5 microM) and cyclopiazonic acid with Ki = 0.4 microM. It is suggested that in the uterine smooth muscle of the oestrogen-dominated rats, nonmitochondrial receptor-operated intracellular calcium store is represented by endoplasmic reticulum.  相似文献   

16.
Mitochondrial and heavy microsomal fractions were isolated from rat hearts perfused for different intervals with Ca2+-free medium, as well as from hearts reperfused with control medium after perfusion with Ca2+-free medium. Contractile failure due to intracellular calcium deficiency produced by perfusing the isolated rat hearts with Ca2+-free medium resulted in a marked decline of calcium binding and uptake activities of the mitochondrial fraction without any effect on the microsomal fraction. On the other hand, inability of the rat hearts to recover their contractile force due to intracellular calcium overload produced by reperfusion for 10 min with control medium after 5-20 min of perfusion with Ca2+-free medium was associated with decreased microsomal calcium-binding and uptake activities and increased mitochondrial calcium-binding and uptake activities. When the hearts perfused with Ca2+-free medium in the presence of low sodium (35 mM) for 5 min were reperfused with control medium, the contractile force recovered completely, and appreciable augmentation in mitochondrial calcium transport or depression in microsomal calcium transport as seen in conditions of intracellular calcium overload did not occur. These results suggest dramatic alterations in calcium-transporting properties of mitochondria and sarcoplasmic reticulum in hearts failing due to intracellular calcium deficiency and calcium overload, respectively.  相似文献   

17.
No.7943 (2-[2-[4-(4-nitrobenzyloxy)phenyl]ethyl]isothiourea methanesulfonate), a selective inhibitor of the Na+/Ca2+ exchanger (NCX1), has been newly synthesized. It dose-dependently inhibited Na+i-dependent 45Ca2+ uptake and Na+i-dependent [Ca2+]i increase in cardiomyocytes, smooth muscle cells, and NCX1-transfected fibroblasts (IC50 = 1.2-2.4 microM). Inhibition was observed without prior incubation with the agent and was completely reversed by washing cells with buffer for 1 min. Interestingly, No.7943 was much less potent in inhibiting Na+o-dependent 45Ca2+ efflux and Na+o-induced [Ca2+]i decline (IC50 = >30 microM), indicating that it selectively blocks the reverse mode of Na+/Ca2+ exchange in intact cells. In cardiac sarcolemmal preparations consisting mostly of inside-out vesicles, the agent inhibited Na+i-dependent 45Ca2+ uptake and Na+o-dependent 45Ca2+ efflux with similar, but slightly lower, potencies (IC50 = 5.4-13 microM). Inhibition was noncompetitive with respect to Ca2+ and Na+ in both cells and sarcolemmal vesicles. These results suggest that No.7943 primarily acts on external exchanger site(s) other than the transport sites in intact cells, although it is able to inhibit the exchanger from both sides of the plasma membrane. No.7943 at up to 10 microM does not affect many other ion transporters nor several cardiac action potential parameters. This agent at these concentrations also did not influence either diastolic [Ca2+]i or spontaneous beating in cardiomyocytes. Furthermore, No.7943 markedly inhibited Ca2+ overloading into cardiomyocytes under the Ca2+ paradox conditions. Thus, No.7943 is not only useful as a tool with which to study the transport mechanism and physiological role of the Na+/Ca2+ exchanger but also has therapeutic potential as a selective blocker of excessive Ca2+ influx mediated via the Na+/Ca2+ exchanger under pathological conditions.  相似文献   

18.
The sarcoplasmic reticulum (SR) C(a2+)-ATPase was purified and reconstituted into the sealed phospholipids vesicles with or without transmembrane Ca2+ gradient. The role of phospholipids, especially phosphatidylcholine (PC), in the modulation of C(a2+)-ATPase by transmembrane Ca2+ gradient was investigated. The results are as follows. (i) Incubated with phospholipids, the enzyme activity of the delipidated C(a2+)-ATPase is inhibited by Ca2+ and the highest inhibition is observed in the presence of PC. (ii) When there exists a transmembrane Ca2+ gradient (higher Ca2+ concentration inside vesicles, 1,000 mumol/L:50 mumol/L, similar to the physiological condition), the inhibition of C(a2+)-ATPase by transmembrane Ca2+ gradient can be only observed in the vesicles containing PC:PE, but not in those containing PS:PE or PG:PE. The highest inhibition is obtained at a 50:50 molar ratio of PC:PE (iii) By comparing the effects of PC differing in acyl chains, higher inhibition of C(a2+)-ATPase is observed in vesicles containing DPPC:PE and DOPC:PE, while no inhibition in DMPC:PE vesicles (iv) If the transmembrane Ca2+ gradient is in the inverse direction, the enzyme activity of C(a2+)-ATPase is inhibited whenever reconstituted with acidic or neutral phospholipids.  相似文献   

19.
1. The effects of diltiazem on various functional parameters were studied in bovine cultured adrenal chromaffin cells stimulated with the nicotinic receptor agonist dimethylphenylpiperazinium (DMPP) or with depolarizing Krebs-HEPES solutions containing high K+ concentrations. 2. The release of [3H]-noradrenaline induced by DMPP (100 microM for 5 min) was gradually and fully inhibited by increasing concentrations of diltiazem (IC50 = 1.3 microM). In contrast, the highest concentration of diltiazem used (10 microM) inhibited the response to high K+ (59 mM for 5 min) by only 25%. 3. 45Ca2+ uptake into cells stimulated with DMPP (100 microM for 1 min) was also blocked by diltiazem in a concentration-dependent manner (IC50 = 0.4 microM). Again, diltiazem blocked the K(+)-evoked 45Ca2+ uptake (70 mM K+ for 1 min) only by 20%. In contrast, the N-P-Q-type Ca2+ channel blocker omega-conotoxin MVIIC depressed the K+ signal by 70%. In the presence of this toxin, diltiazem exhibited an additional small inhibitory effect, indicating that the compound was acting on L-type Ca2+ channels. 4. Whole-cell Ba2+ currents through Ca2+ channels in voltage-clamped chromaffin cells were inhibited by 3-10 microM diltiazem by 20-25%. The inhibition was readily reversed upon washout of the drug. 5. The whole-cell currents elicited by 100 microM DMPP (IDMPP) were inhibited in a concentration-dependent and reversible manner by diltiazem. Maximal effects were found at 10 microM, which reduced the peak IDMPP by 70%. The area of each curve represented by total current (QDMPP) was reduced more than the peak current. At 10 microM, the inhibition amounted to 80%; the IC50 for QDMPP inhibition was 0.73 microM, a figure close to the IC50 for 45Ca2+ uptake (0.4 microM) and [3H]-noradrenaline release (1.3 microM). The blocking effects of diltiazem developed very quickly and did not exhibit use-dependence; thus the drug blocked the channel in its closed state. The blocking effects of 1 microM diltiazem on IDMPP were similar at different holding potentials (inhibition by around 30% at -100, -80 or -50 mV). Diltiazem did not affect the current flow through voltage-dependent Na+ channels. 6. These data are compatible with the idea that diltiazem has little effect on Ca2+ entry through voltage-dependent Ca2+ channels in bovine chromaffin cells. Neither, does diltiazem affect INa. Rather, diltiazem acts directly on the neuronal nicotinic receptor ion channel and blocks ion fluxes, cell depolarization and the subsequent Ca2+ entry and catecholamine release. This novel effect of diltiazem might have clinical relevance since it might reduce the sympathoadrenal drive to the heart and blood vessels, thus contributing to the well established antihypertensive and cardioprotective effects of the drug.  相似文献   

20.
Phospholamban (PLN) phosphorylation contributes largely to the inotropic and lusitropic effects of beta-adrenergic agonists on the heart. The mechanical effects of PLN phosphorylation on the heart are generally attributed solely to an increase in the apparent affinity of the Ca pump in the sarcoplasmic reticulum (SR) membranes for Ca2+ with little or no effect on Vmax(Ca). In the present report, we compare the kinetic properties of the cardiac SR Ca pump in commonly studied crude microsomes with those of our recently developed preparation of light SR vesicles. We demonstrate that in crude microsomes, the increase in the apparent affinity of the pump for Ca2+ is larger, while the increase in Vmax(Ca) is smaller, than in purified vesicles. The greater phosphorylation-induced increase in apparent Ca2+ affinity in crude microsomes may be further enhanced by an ATP-sensitive inhibitory effect of ruthenium red on the activity of the pump at subsaturating, but not saturating, Ca2+ concentrations as a result of a greater inhibition in unphosphorylated microsomes. Upon increasing the ATP concentration from 1 to 5 mm, an inhibition by 10 micrometer ruthenium red is eliminated in phosphorylated microsomes and reduced in control microsomes. Addition of the phosphoprotein phosphatase inhibitor okadaic acid produces a considerable increase in the phosphorylation-induced effects in both crude and purified microsomes. We conclude that the use of purified cardiac SR vesicles is critical for the demonstration of a major increase in Vmax(Ca) in addition to an increase in the pump's apparent affinity for Ca2+ in response to phosphorylation of PLN by protein kinase A.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号