共查询到20条相似文献,搜索用时 15 毫秒
1.
While cholinergic stimulation of the PRF evokes a REM-like state, electrical stimulation of LDT/PPT neurons has not been used to test the hypothesis of mesopontine cholinergic control of REM sleep. Adult cats were implanted for electrographic recording and with bipolar unilateral stimulating electrodes, either in the LDT or within the PRF (stimulation control). Baseline recordings of the normal sleep-wake cycle were carried out for 5 h. On the next day, continuous stimulation of the LDT or mPRF was carried out during the same time period (0.5 ms pulses, 1 microA, 8 Hz) and with post-stimulation recording for 3 h. A second baseline recording day followed with same protocol as the first baseline day. This 3-day sequence, separated by 3 days, was repeated three times in each of the three LDT and the three medial PRF cats. Five hours of chronic low-amplitude stimulation of the LDT induced a highly significant increase in total REM and in the duration of REM sleep bouts. Stimulation of the mPRF did not affect any of the behavioral states. This study, the first to our knowledge to use low-amplitude stimulation of LDT in freely moving cats, indicates the importance of mesopontine cholinergic neurons in REM sleep. 相似文献
2.
EA Stein 《Canadian Metallurgical Quarterly》1976,223(1):54-63
The effects of small, i.v. infusion of morphine on the heart rate was studied in unanesthetized rats. A dose-response study indicated that all values of morphine between 5 and 1000 mug/kg resulted in a transient bradycardia. In addition, morphine doses above 20 mug/kg induced cardiac irregularities including atrial fibrillation, atrioventricular block and temporary cardiac arrest. When morphine was delivered daily over a period of eight weeks, cardiac responding (first arrhythmias and then the bradycardia) became tolerant at a time when catatonia was still present. These results indicate that in an unanesthetized rat, profound cardiovascular effects are seen to very small, mug range, doses of morphine. 相似文献
3.
To test the hypothesis that the pedunclopontine tegmental nucleus (PPTg) plays a role in anxiety, rats with electrolytic lesions of the PPTg were tested in two animal models of anxiety, the elevated plus maze and the social interaction tests. Histological analysis showed that lesions were concentrated on the caudal half of the PPTg. In the elevated plus maze, traditional as well as 'risk assessment' measures indicated significantly increased anxiety in the PPTg-lesioned rats vs sham-operated controls. In the social interaction test, behavioural scores were biased towards elevated anxiety in the PPTg-lesioned rats but only the number of social sniffs reached significance. Our results confirm that electrolytic lesions of the caudal PPTg produce increased anxiety. 相似文献
4.
Neuronal spike activity in the nucleus accumbens of behaving rats during ethanol self-administration
Many lines of evidence support the importance of the nucleus accumbens (NAC) for ethanol-reinforced behavior. The nature of the neuronal activity that occurs in this region during ethanol self-administration is not known. We recorded from ensembles of single-units primarily located within the shell of the NAC during operant responding for oral ethanol solutions by well-trained rats. Of 90 units recorded from seven sessions from seven rats, 41 (46%) did not exhibit significant changes in relation to the experimental events. Of the 49 units (54%) that did exhibit significant phasic changes, alterations in firing rate occurred in relation to the following experimental events: operant response (63%), tone stimulus (20%), and ethanol delivery (63%). In addition, changes in spike activity during the intervals between the three experimental events were noted in 33% of the units. Most units (55% of responsive units) responded to multiple experimental events. Thus different but overlapping populations of neurons in the NAC represent each event that occurs along the temporal dimension of a single trial performed to obtain ethanol reward. The data suggest that the NAC plays a crucial role in linking together conditioned and unconditioned internal and external stimuli with motor plans to allow for ethanol-seeking behavior to occur. 相似文献
5.
Although cholinergic neurons in the laterodorsal and pedunculopontine tegmental nuclei have been shown to have a pivotal role in neural mechanisms of paradoxical sleep, their function during wakefulness is less understood. To examine the latter, we have recorded from "broad-spike neurons", which were distinguished by their long spike duration, in the laterodorsal tegmental nucleus of undrugged, head-restrained rats, and examined their response properties to sensory stimuli such as light touch to the tail, air puff to the face, 2 kHz pure tone and flashes of light. Broad-spike neurons from the locus coeruleus and dorsal raphe nucleus were studied for comparison; these neurons have been demonstrated to be noradrenergic and serotonergic, respectively. The broad-spike neurons in the laterodorsal tegmental nucleus have also been suggested to be cholinergic. There were two kinds of responses: (1) a simple increase or decrease in firing, reflecting an elevated level of vigilance; and (2) a phasic response composed of a single spike or brief, high frequency burst, usually diminishing or disappearing upon repetition of the stimulus. When two or more types of stimuli were effective in a neuron, they evoked responses of the same quality. Most of the dorsal raphe neurons displayed only the simple increase of firing, whereas the locus coeruleus neurons gave a phasic response with rather weak attenuation upon repetition. Compared with these, the laterodorsal tegmental neurons were heterogeneous: about one-quarter showing only a simple change of firing (half increasing, half decreasing); and two-thirds displaying phasic responses. The latter response of many neurons attenuated strongly upon repetition. The laterodorsal tegmental neurons were classified into several groups according to their spontaneous firing behavior during sleep and wakefulness, but every neuron in a group did not show the same type of response. For example, some of the neurons which were most active during paradoxical sleep and essentially silent during wakefulness decreased or stopped firing upon sensory stimulation, while others in this group had strong phasic responses. These results suggest that putative cholinergic neurons in the laterodorsal tegmental nucleus have heterogenous properties not only with respect to their spontaneous activity during sleep and wakefulness but also with respect to their response to sensory stimulation. Some of these neurons may function to induce a global attentive state in response to a novel stimulus. 相似文献
6.
This study is based on interviews with 37 persons fulfilling the DSM-IV criteria for kleptomania recruited through newspaper advertisements, and on 50 shoplifters interviewed directly after apprehension. Our hypothesis was that there are no absolute borders between 'pure' kleptomania according to DSM-IV and other forms of shoplifting. When asked about the latest case of shoplifting, one fifth of the shoplifters reported not having stolen the item for personal use and had later discarded it. A quarter of the kleptomaniacs reported ambivalence when asked if they needed the item in question. The degree of reported impulsivity and a feeling of not being oneself at the time of the theft was the same in the two groups. The two groups also estimated their degree of impulsivity, planning, thrill, relief, vengeance, need, pleasure on a Visual Analogue Scale (VAS) as well as the degree of psychiatric imbalance on the latest theft occasion. These estimates showed that there were no differences between the groups concerning the degree of planning, psychological imbalance and the need for the stolen item in question. The kleptomaniacs rated a feeling of inner tension before the theft higher than the shoplifters. The same was true concerning a feeling of relief during the theft and impulsivity. However, the shoplifters also rated high on all these items. Altogether, these findings support our hypothesis that many shoplifters, even if they do not fulfill all DSM criteria for kleptomania, may constitute a significant medical problem and should be offered support and treatment. Anti-depressants as well as the educational programmes developed by the Shoplifters Alternatives may be effective not only in cases of kleptomania but also for more unselected groups of non-professional shoplifters. 相似文献
7.
Bordi Fabio; LeDoux Joseph E.; Clugnet Marie C.; Pavlides Constantine 《Canadian Metallurgical Quarterly》1993,107(5):757
Examined acoustic responses of single units in awake, freely behaving rats in the lateral nucleus of the amygdala (AL). Recordings were made from a movable bundle of 9 microwires. Most cells had very low rates of spontaneous activity (about 3 spikes/sec on average). Firing rates increased during sleep states. Short-latency auditory responses (12–25 msec) were found in the dorsal subnucleus (ALd) of the AL. Cells in the ALd most typically responded in a sustained fashion. Some of the cells in the ALd showed preferences for high frequencies, tone bursts, or frequency-modulated stimuli with center frequencies above 12 kHz. Response latencies were considerably longer in other areas of the AL. Results corroborate the main findings of a previous study (F. Bordi and J. E. LeDoux, 1992) that examined the acoustic response properties of single cells in the AL in anesthetized rats. Together the findings from awake and anesthetized rats provide the most precise information about sensory processing in AL neurons available to date. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
8.
Prepulse inhibition (PPI) of startle is impaired in schizophrenics, which suggests they have disturbances in circuitry that controls PPI. How activity in forebrain circuitry is communicated to the primary startle circuit to modulate PPI was explored. Subpallidal cells innervate the pedunculopontine tegmental nucleus (PPTg). Infusion of the γ-aminobutyric acid antagonist picrotoxin into the subpallidum impaired PPI. In other rats, electrolytic PPTg lesions decreased or eliminated PPI, potentiated startle amplitude, and did not alter habituation. The disruption of PPI correlated significantly with the extent of PPTg damage. PPTg lesions reduced PPI when startle stimuli were weak or intense (104 or 140 db) and when prepulse stimuli ranged from 2 to 17 db above background but were most profound with prepulses 5–8 db above background. The PPTg modulates sensorimotor gating and may process and transmit information from forebrain structures to the primary startle curcuit. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
9.
K Kageyama F Tozawa N Horiba H Watanobe T Suda 《Canadian Metallurgical Quarterly》1998,243(1-3):17-20
To examine the direct effects of serotonin (5-HT) on the release and synthesis of corticotropin-releasing factor (CRF) in the hypothalamic paraventricular nucleus (PVN), 5-HT was microinjected just onto the bilateral PVN of conscious rats. Plasma adrenocorticotropic hormone (ACTH) levels peaked at 30 min and returned to the basal levels in 90 min. Northern blot analysis revealed that the CRF messenger RNA (mRNA) level in the PVN as well as the proopiomelanocortin mRNA level in the anterior pituitary significantly increased 120 min after the 5-HT injections (50-250 nmol/side). Pretreatment with intracerebroventricular (i.c.v.) injection of pindobind 5-HT1A (5 nmol) or LY-278584 (500 nmol) completely abolished the 5-HT-induced ACTH response, whereas LY-53857 (100 nmol) was without effect. These results suggest that 5-HT stimulates CRF release, which has interactions with 5-HT1A and 5-HT3 receptors on CRF neurons in the PVN, and activates CRF synthesis in conscious rats. 相似文献
10.
JH Meijer K Watanabe J Schaap H Albus L Détári 《Canadian Metallurgical Quarterly》1998,18(21):9078-9087
The suprachiasmatic nuclei (SCN) of the hypothalamus contain a pacemaker that generates circadian rhythms in many functions. Light is the most important stimulus that synchronizes the circadian pacemaker to the environmental cycle. In this paper we have characterized the baseline neuronal firing patterns of the SCN as well as their response to light in freely moving rats. Multiunit and single-unit recordings showed that SCN neurons increase discharge during daytime and decrease discharge at night. Discharge levels of individual neurons that were followed throughout the circadian cycle appeared in phase with the population and were characterized by low discharge rates (often below 1 Hz), with a twofold increase during the day. The effect of light on the multiunit response was dependent on the duration of light exposure and on light intensity, with light thresholds of approximately 0.1 lux. The light response level showed a strong dependency on time of day, with large responsiveness at night and low responsiveness during day. At both phases of the circadian cycle, the response level could be raised by an increase in light intensity. Single-unit measurements revealed that the time-dependent light response of SCN neurons was present also at the level of single units. The results show that the basic light response characteristics that were observed at the multiunit level result from an integrated response of similarly behaving single units. Research at the single-unit level is therefore a useful approach for investigating the basic principles of photic entrainment. 相似文献
11.
A gas chromatography-combustion-isotope ratio mass spectrometry method for confirmation of hydrocortisone abuse in horseracing and equine sports is proposed. Urinary hydrocortisone was converted to a bismethylenedioxy derivative which presents good gas chromatographic properties and brings an extra carbon contribution of only two carbon atoms. Synthetic hydrocortisone has a different 13C abundance from that of natural urinary horse hydrocortisone and the difference is significant, therefore exogenous and endogenous hydrocortisone can be distinguished. 相似文献
12.
Increased firing of cholinergic neurons of the laterodorsal tegmental nucleus (LDT) plays a critical role in generating the behavioral states of arousal and rapid eye movement sleep. The majority of these neurons exhibit a prominent transient potassium current (IA) that shapes firing but the properties of which have not been examined in detail. Although IA has been reported to be blocked by intracellular cesium, the IA in LDT neurons appeared resistant to intracellular cesium. The present study compared the properties of this cesium-resistant current to those typically ascribed to IA. Whole cell recordings were obtained from LDT neurons (n = 67) in brain slices with potassium- or cesium-containing pipette solutions. A transient current was observed in cells dialyzed with each solution (KGluc-85%; CsGluc-79%). However, in cesium-dialyzed neurons, the transient current was inward at test potentials negative to about -35 mV. Extracellular 4-aminopyridine (4-AP; 2-5 mM) blocked both inward and outward current, suggesting the inward current was reversed IA rather than an unmasked transient calcium current as previously suggested. This conclusion was supported by increasing [K]o from 5 to 15 mM, which shifted the reversal potential positively for both inward and outward current (+17.89 +/- 0.41 mV; mean +/- SE). Moreover, recovery from inactivation was rapid (tau = 15.5 +/- 4 ms; n = 4), as reported for IA, and both inward and outward transient current persisted in calcium-free solution [0 calcium/4 mM ethylene glycol-bis(beta-aminoethyl ether)-N,N,N', N'-tetraacetic acid; n = 4] and during cadmium-blockade of calcium currents (n = 3). Finally, the transient current was blocked by intracellular 4-AP indicating that adequate dialysis occurred during the recordings. Thus the Cs-resistant current is a subthreshold IA. We also estimated the voltage-dependence of activation (V1/2 = -45.8 +/- 2 mV, k = 5.21 +/- 0.62 mV, n = 6) and inactivation (V1/2 = -59. 0 +/- 2.38 mV, k = -5.4 +/- 0.49 mV, n = 3) of this current. Computer simulations using a morphologically accurate model cell indicated that except for the extreme case of only distal A-channels and a high intracellular resistivity, our parameter estimates were good approximations. In conclusion, guinea pig LDT neurons express subthreshold A-channels that are resistant to intracellular cesium ions. This suggests that these channels differ fundamentally in their ion permeation mechanism from those previously studied. It remains to be determined if Cs+ resistance is common among brain A-channels or if this property is conferred by known A-channel subunits. 相似文献
13.
In this article we describe three experiments aimed at determining why the conditioned stimulus/stimuli (CS) elicits similar increases in heart rate in groups given paired and random training. The first study demonstrates that regardless of the pseudoconditioning control procedure used (random, backwards, shock-alone, or naive), the same pattern of results is obtained: the increases in arterial pressure are greater in the paired than in each control group, but the heart rate rises to the same extent in all groups. The second study determined that the context in which the responses are tested (conditioning apparatus vs novel test chamber) does not affect the general pattern of results obtained. The third study demonstrates that the superficially similar increases in heart rate in conditioned and pseudoconditioned rats are achieved by different physiological mechanisms: coactivation of the sympathethic and parasympathetic nervous systems in conditioned rats and sympathetic excitation alone in pseudoconditioned rats. Thus, the heart is influenced by associative emotional processes, but heart rate is not, under these conditions, a particularly useful index of those influences. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
14.
Freely behaving Aplysia californica can learn that food is inedible. Ss were given access to seaweed tied into canvas and attached to a force transducer. Ss repeatedly found the stimulus, attempted to ingest it, and failed. The force transducer provided an objective record of the number of attempts made by the animal to ingest the stimulus, the length of each attempt, and its intensity (i.e., peak force exerted). Within 2.5 hrs, Ss showed significant declines in these 3 measures of response to the stimulus. When exposed to the same stimulus the next day, animals showed more rapid declines in responsiveness, which indicate a retention of learning. Training appeared to be specific. Responses to the seaweed Laurencia of animals previously trained on the seaweed Ulva do not differ from the responses of naive animals to Laurencia. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
15.
K Yamamura M Inoue N Igarashi Y Takahashi Y Yamada 《Canadian Metallurgical Quarterly》1998,796(1-2):257-264
Effects of food consistency on the mode of the phase-linked modulation in the digastric reflex amplitude were examined in naturally chewing rabbits. Two test foods with different textures (bread as a soft food, pellet as a hard food) were used. The digastric reflex was elicited by electrical stimulation (10 train pulses at 2 kHz) of the inferior alveolar nerve. The amplitude of the digastric reflex measured was divided into three categories depending on the chewing phases in which the stimulus was delivered and each value was compared with the control response obtained when the animal was resting. The reflex was strongly inhibited in the jaw-opening phase and no difference was observed in the inhibitory effect between the foods. In the jaw-closing phase, larger digastric reflexes than those in the opening phase were elicited with both foods. This was the case in both the fast-closing and slow-closing phases. Reflex amplitude was significantly larger during chewing of the hard food than the soft food and, thereafter, inhibition of the reflex was observed only during chewing of the soft food in the closing phase. The results suggest the following: (1) food consistency may affect the central mechanism which regulates the digastric reflex and (2) the reflex may contribute to the regulation of masticatory force during chewing particularly hard food. 相似文献
16.
We examined spatial-temporal patterns of neural activity, as inferred from 700 nm light reflectance, from the dorsal hippocampus and surrounding neocortex in seven freely behaving cats following 1.5, 2.5, 3.5 and 5.0 mg/kg intravenous cocaine administration. Images were acquired using a new technique which gathered reflected light from cortical and subcortical structures. Cardiac and respiratory patterning, collected simultaneously with optical images, revealed increased rates and diminished variation after intravenous cocaine administration. Cocaine increased reflectance correlates of hippocampal neural activity in a dose-dependent fashion over a 120 min period, with a lengthening time-to-peak effect (22-76 min). The largest dose resulted in an initial decrease, followed by the greatest enhancement in neuronal activity. Correlates of neural activation in the neocortex displayed an inverse dose-response curve to that found in the hippocampus; the time-to-peak effect was shorter (6-43 min) and the maximal change was reduced. Regional patches and bands of activation occurred during the period of the cocaine response, and were more pronounced in the hippocampus than the neocortex. Procaine, administered in a similar dose, slightly increased neural activity for 10 min in both the hippocampus and neocortex, and elicited a small increase in respiration. Cocaine induces a pronounced enhancement of neural activation in the neocortex and dorsal hippocampus; the time course of activation in the hippocampus parallels an increased respiratory pattern and outlasts the neocortical response. We speculate that hippocampal activation may be related to the profound respiratory acceleration found in response to cocaine. 相似文献
17.
Homs-Ormo Sandra; Torras-Garcia Meritxell; Portell-Cortés Isabel; Edo-Izquierdo Sílvia; Morgado-Bernal Ignacio; Coll-Andreu Margalida 《Canadian Metallurgical Quarterly》2007,121(2):411
The effects of posttraining excitotoxic lesions of the pedunculopontine tegmental nucleus (PPTg) on two-way active avoidance after changing the conditioned stimulus (CS) used during prelesion training were examined. Prelesion training was carried out with either a tone or a light as the CS, and this CS was changed during postlesion training. Replacing the tone with a light reduced the performance of control and lesioned rats, but the degree of reduction was higher in the latter. Replacing the light with a tone had slight detrimental effects in lesioned rats but not in controls. Thus, posttraining PPTg lesions slowed down the reacquisition of shuttle-box avoidance under conditions of CS transfer, an effect that may be attributable to disruption of attention and/or gating of sensory stimuli. (PsycINFO Database Record (c) 2010 APA, all rights reserved) 相似文献
18.
Sleep deprivation is associated with poor cognitive ability and impaired physical health, but the ways in which the brain and body become compromised are not understood. In sleep-deprived rats, plasma total T4 and T3 concentrations decline progressively to 78% and 47% below baseline values, respectively, brown adipose tissue 5'-deiodinase type II activity increases 100-fold, and serum TSH values are unknown. The progressive decline in plasma thyroid hormones is associated with a deep negative energy balance despite normal or increased food intake and malnutrition-like symptoms that eventuate in hypothermia and lethal systemic infections. The purpose of the present experiment was to evaluate the probable causes of the low plasma total T4 during sleep deprivation by measuring the free hormone concentration to minimize binding irregularities and by challenging the pituitary-thyroid axis with iv TRH to determine both 1) the pituitary release of TSH and 2) the thyroidal response of free T4 (FT4) and free T3 (FT3) release to the TSH increment. Sleep-deprived rats were awake 91% of the total time compared with 63% of the total time in yoked control rats and 50% of the total time during the baseline period. Cage control comparison rats were permitted to sleep normally. Sustained sleep deprivation resulted in a decline from baseline in plasma FT4 of 73 +/- 6% and FT3 of 45 +/- 12%, which were similar to the declines in total hormone concentrations observed previously; nonstimulated TSH was unchanged. In the yoked and cage control groups, FT4 also declined, but much less than that of the sleep-deprived group. The relative changes in free compared with total hormone concentrations over the study were also less parallel than those in the sleep-deprived group. The plasma TSH response to TRH was similar in all groups across experimental days. The plasma FT4 and FT3 concentrations in sleep-deprived rats increased after TRH-stimulated TSH release to an extent comparable to control values. Taken together, low basal FT4 and FT3 hormone concentrations and unchanged TSH and thyroidal responses to TRH suggest a pituitary or hypothalamic contribution to the hypothyroxinemia during sleep deprivation. 相似文献
19.
Our earlier studies suggest dopamine and serotonin interact with acetylcholine (ACh) in the nucleus accumbens (NAC) as part of a system for motivation and reinforcement. The purpose of the present experiment was to characterize a possible link between GABA and acetylcholine in the nucleus accumbens using microdialysis in freely moving rats. Different doses of GABA, muscimol, baclofen, saclofen and bicuculline were locally infused into the nucleus accumbens through the microdialysis probe. GABA and its agonists dose-dependently decreased extracellular levels of acetylcholine in the nucleus accumbens. In contrast the GABAA antagonist, bicuculline, dose-dependently increased extracellular ACh while the GABAB antagonist, saclofen, was without effect. Co-infusion of bicuculline or saclofen was shown to block the decrease in recoverable ACh produced by muscimol or baclofen, respectively. The results demonstrate an inhibitory action of GABA on acetylcholine interneurones in the nucleus accumbens involving both GABAA and GABAB receptor subtypes. In addition a tonic inhibitory GABAergic tone is probably mediated through GABAA receptors. 相似文献
20.
Puryear Corey B.; Kim Min Jung; Mizumori Sheri J. Y. 《Canadian Metallurgical Quarterly》2010,124(2):234
[Correction Notice: An erratum for this article was reported in Vol 124(3) of Behavioral Neuroscience (see record 2010-10681-004). There was one error in the text on p. 237 and several errors in the captions to Figures 1 (p. 238), 3 (p. 240), and 5 (p. 242). The corrected text and captions are provided in the erratum.] As one of the two main sources of brain dopamine, the ventral tegmental area (VTA) is important for several complex functions, including motivation, reward prediction, and contextual learning. Although many studies have identified the potential neural substrate of VTA dopaminergic activity in reward prediction functions during Pavlovian and operant conditioning tasks, less is understood about the role of VTA neuronal activity in motivated behaviors and more naturalistic forms of context-dependent learning. Therefore, VTA neural activity was recorded as rats performed a spatial memory task under varying contextual conditions. In addition to reward- and reward predicting cue-related firing commonly observed during conditioning tasks, the activity of a large proportion of VTA neurons was also related to the velocity and/or acceleration of the animal’s movement. It is important to note that movement-related activity was strongest when rats displayed more motivation to obtain reward. Furthermore, many cells displayed a dual code of movement- and reward-related activity. These two modes of firing, however, were differentially regulated by context information, suggesting that movement- and reward-related firing are two independently regulated modes of VTA neuronal activity and may serve separate functions. (PsycINFO Database Record (c) 2011 APA, all rights reserved) 相似文献