共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
数据流的聚类作为聚类的一个分支,已经成为了数据挖掘的研究热点。虽然已经有不少数据流算法出现,但是大部分都是针对低维的数值型数据,很少有高维文本流的研究。本文在传统的数据流聚类框架基础上,提出了一种新的文本微聚类结构体,它更适合文本聚类,同时还将在线微聚类分为潜在微聚类和异常微聚类,提高了对孤立点的适应能力。实验表明该算法相对于其他文本流聚类算法更有效。 相似文献
3.
4.
该文提出了一种方便扩展,高可复用的类的序列化与反序列化模块的框架设计,通过这种做法使程序开发人员从繁重的编码过程中解放出来,使他们能够更为关注程序中的业务逻辑。使整个程序系统结构清晰,方便维护。 相似文献
5.
网络流量分类技术对网络安全管理起着非常重要的作用。随着网络和信息技术的发展,传统的基于端口号和深度包检测分类方法的局限性愈发明显,不能对现有的流量进行准确分类。提出一种基于流相关性的半监督网络流量分类算法,并使用MDL-CON高斯混合模型作为聚类模型,通过聚类过程中利用流之间的相关性提高模型的准确度。采用MDL准则解决了高斯混合模型需要人为预先设定类簇数目和高度依赖于初始值的问题。实验结果表明,利用该方法来处理流量分类问题可取得理想的分类效果。 相似文献
6.
在实际应用中,人们往往比较关心最近一段时间内数据流的分布状况.在传统的基于界标模型的聚类算法CluStream中,没有淘汰过期元组,不能准确反映当前数据流的数据分布状况.滑动窗口是数据流中一种关注近期数据的近似方法.为了提高对流数据聚类分析的质量及效率,对算法clustream进行了改进,采用滑动窗口来支持数据处理.为了减少聚类操作中每次迭代的计算次数,算法采用改进的k-means来执行聚类操作.优化后的算法能及时淘汰过期元组,同时对新到达的元组不断进行实时处理,可以获得更准确的分析结果.与聚类算法CluStream相比,优化算法可获得较小的内存开销和快速的数据处理能力,聚类结果更合理清晰. 相似文献
7.
8.
9.
许礼捷 《数字社区&智能家居》2009,(2)
介绍了入侵检测技术中的两种聚类算法,阐述算法在入侵检测技术中的应用原理,并针对算法的优缺点提出改进的算法,通过分析表明,改进算法是一种较为理想的算法。 相似文献
10.
11.
12.
高述涛 《计算机工程与应用》2012,48(21):83-88
网络流量数据中含有大量噪声,对网络流量预测精度产生不利影响,为此,提出一种小波消噪和神经网络相融合的网络流量混沌预测模型。采用小波技术对网络流量数据进行消噪处理,采用关联维数确定BP神经网络输入变量个数,采用BP神经网络建立网络流量预测模型。结果表明,与消噪前比,小波消噪和神经网络模型更能准确刻画网络流量的变化趋势,有效提高了网络流量的预测精度,为非线性预测问题提供了一种新的研究思路。 相似文献
13.
针对传统加密网络流量分类方法准确率较低、泛用性不强、易侵犯隐私等问题,提出了一种基于卷积神经网络的加密流量分类方法,避免依赖原始流量数据,防止过度拟合特定应用程序的字节结构。针对网络流量的数据包大小和到达时间信息,设计了一种将原始流量转换为二维图片的方法,直方图中每个单元格代表到达相应时间间隔的具有相应大小数据包的数量,不依赖数据包有效载荷,避免了侵犯隐私;针对LeNet-5卷积神经网络模型进行了优化以提高分类精度,嵌入Inception模块进行多维特征提取并进行特征融合,使用1*1卷积来控制输出的特征维度;使用平均池化层和卷积层替代全连接层,提高计算速度且避免过拟合;使用对象检测任务中的滑动窗口方法,将每个网络单向流划分为大小相等的块,确保单个会话中训练集中的块和测试集中的块没有重叠,扩充了数据集样本。在ISCX数据集上的分类实验结果显示,针对应用流量分类任务,准确率达到了95%以上。对比实验结果表明,训练集和测试集类型不同时,传统分类方法出现了显著的精度下降乃至失效,而所提方法的准确率依然达到了89.2%,证明了所提方法普适于加密流量与非加密流量。进行的所有实验均基于不平衡数据集,... 相似文献
14.
针对城市交通难以处理大量数据且实时性差等问题,提出了根据增量式城市交通流数据预测拥堵情况的一种基于国产处理器的L-BFGS(limited-memory BFGS)算法。该算法通过存储向量序列计算Hessian矩阵,改进Two-Loop算法求下降方向,在Spark集群中并行处理时收敛速度快,适用于实时性要求强的城市交通场景。实验结果证明,L-BFGS预测算法完全可以在国产平台上对大规模的实时交通数据流进行快速建模、预测,在改善城市交通管理水平提供有效支撑的同时也丰富了国产芯片的应用领域。 相似文献
15.
基于云遗传的RBF神经网络的交通流量预测 总被引:1,自引:0,他引:1
以神经网络和混沌时间序列理论为基础,提出了一种基于云遗传的RBF神经网络优化算法。该算法利用云模型云滴的随机性和稳定倾向性的特点,由正态云模型的Y条件云发生器实现交叉操作,由基本云发生器实现变异操作,提高了遗传搜索的效率,精简了网络结构。将该算法应用到Logistic混沌时间序列和实测交通流时间序列进行算法的有效性验证,并与传统的RBF算法和遗传算法优化的RBF算法(GARBF)进行比较。仿真结果表明该算法对混沌时间序列和交通流预测的精度有较大提高,从而证明该算法在交通流时间序列预测领域的可行性和有效性。 相似文献
16.
针对不平衡网络流量分类精度不高的问题,在旋转森林算法的基础上结合Bagging算法的Bootstrap抽样和基于分类精度排序的基分类器选择算法,提出一种改进的旋转森林算法。首先,对原始训练集按特征进行子集划分并分别使用Bagging进行样本抽样,通过主成分分析(PCA)生成主成分系数矩阵;然后,在原始训练集和主成分系数矩阵的基础上进行特征转换,生成新的训练子集,再次使用Bagging对子集进行抽样,提升训练集的差异性,并使用训练子集训练C4.5基分类器;最后,使用测试集评价基分类器,依据总体分类精度进行排序筛选,保留分类精度较高的分类器并生成一致分类结果。在不平衡网络流量数据集上进行测试实验,依据准确率和召回率两个标准对C4.5、Bagging、旋转森林和改进的旋转森林四种算法评价,依据模型训练时间和测试时间评价四种算法的时间效率。实验结果表明改进的旋转森林算法对万维网(WWW)协议、Mail协议、Attack协议、对等网(P2P)协议的分类准确度达到99.5%以上,召回率也高于旋转森林、Bagging、C4.5三种算法,可用于网络入侵取证、维护网络安全、提升网络服务质量。 相似文献
17.
针对城市路网短时交通流预测受到许多复杂因素的影响,提出一种基于深度时空残差网络的路网短时交通流预测模型DST-Res Net(deep spatio-temporal residual network)。针对时空数据的两个独特属性邻近性和周期性分别设计相应的残差网络分支,通过为两个分支中相同的道路分配不同的权重动态聚合两个分支网络的输出,调整时空属性对不同路段交通流预测的影响程度,将两个残差网络的聚合结果与外部因素进行融合。通过选择RMSE和R2为模型的评价指标进行实验验证,该DST-ResNet模型相较主流的LSTM模型具有更高的有效性和可行性。 相似文献
18.
基于递归最小二乘支持向量机,提出了一种网络业务流量非线性预测算法。通过最小二乘支持量机首先将原始的网络流量数据映射到一个高维空间中,进而在这个高维空间中对流量数据进行预测,使得在低维空间中非线性预测转化为高维空间中的线性预测,提高了预测性能。仿真结果表明,预测误差能够维持在5%以内。 相似文献
19.
为了网络流量预测准确性,提出一种蚁群算法(ACO)优化BP神经网络(BPNN)的网络流量混沌预测模型(ACO-BPNN)。对网络流量时间序列进行重构,将BPNN参数作为蚂蚁的位置向量,通过蚁群信息交流和相互协作找到BPNN最优参数,建立网络流量最优预测模型,并采用实测网络流量数据进行有效性验证。结果表明,ACO-BPNN能够准确刻画网络流量变化特性,提高网络流量的预测准确性。 相似文献
20.
为准确预测短时交通流,缓解交通拥堵提高交通运行效率,提出一种基于CNN-XGBoost的短时交通流预测方法。结合短时交通流数据的时间相关性和空间相关性,将本路段和邻近路段的历史数据一同作为输入进行预测。利用卷积神经网络(convolutional neural networks,CNN)实现特征提取以减少数据冗余性,提出一种参数经果蝇算法优化的XGBoost模型用于交通流量预测。实例验证结果表明,CNN可对时间和空间结合下的交通流数据进行有效特征提取;相比SVR、LSTM等模型,改进的XGBoost模型下的交通流量预测误差明显减小。 相似文献