首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Peanut plants, Arachis hypogaea, infected with white mold, Sclerotium rolfsii, emit a blend of organic compounds that differs both quantitatively and qualitatively from the blend emitted from plants damaged by beet armyworm (BAW; Spodoptera exigua) larvae or from uninfected, undamaged plants. Attack by BAW induced release of lipoxygenase products (hexenols, hexenals, and hexenyl esters), terpenoids, and indole. The plant-derived compound methyl salicylate and the fungal-derived compound 3-octanone were found only in headspace samples from white mold infected plants. White mold-infected plants exposed to BAW damage released all the volatiles emitted by healthy plants fed on by BAW in addition to those emitted in response to white mold infection alone. When BAW larvae were given a choice of feeding on leaves from healthy or white mold-infected plants, they consumed larger quantities of the leaves from infected plants. Exposure to commercially available (Z)-3 hexenyl acetate, linalool, and methyl salicylate, compounds emitted by white mold-infected plants, significantly reduced the growth of the white mold in solid-media cultures. Thus, emission of these compounds by infected plants may constitute a direct defense against this pathogen.  相似文献   

2.
Most studies on plant–herbivore interactions focus on either root or shoot herbivory in isolation, but above- and belowground herbivores may interact on a shared host plant. Cotton (Gossypium spp.) produces gossypol and a variety of other gossypol-like terpenoids that exhibit toxicity to a wide range of herbivores and pathogens. Cotton plants also can emit herbivore-induced volatile compounds at the site of damage and systemically on all tissues above the site of damage. As these volatile compounds attract natural enemy species of the herbivore, they are thought to represent an indirect plant defense. Our study quantified gossypol and gossypol-like compounds in cotton plants with foliage feeding (Heliocoverpa zea), root feeding (Meloidogyne incognita), or their combination. Cotton plants with these treatments were studied also with respect to induced local and systemic volatile production and the attraction of the parasitic wasp Microplitis croceipes to those plants. We also evaluated whether foliage or root feeding affected foliar nitrogen levels in cotton. After 48 hr of leaf feeding and 5 wk of root feeding, local and systemic induction of volatiles (known to attract parasitoids such as M. croceipes) occurred with herbivore damage to leaves, and it increased in levels when root herbivory was added. Nevertheless, M. croceipes were equally attracted to plants with both leaf and root damage and leaf damage only. In contrast to previous studies in cotton, production of gossypol and gossypol-like compounds was not induced in leaf and root tissue following foliage or root herbivory, or their combination. We conclude that root feeding by M. incognita has little influence on direct and indirect defenses of Gossypium hirsutum against insect herbivory.  相似文献   

3.
Anagrus nilaparvatae, an egg parasitoid of the rice brown planthopper Nilaparvata lugens, was attracted to volatiles released from N. lugens-infested plants, whereas there was no attraction to volatiles from undamaged plants, artificially damaged plants, or volatiles from N. lugens nymphs, female adults, eggs, honeydew, and exuvia. There was no difference in attractiveness between plants infested by N. lugens nymphs or those infested by gravid females. Attraction was correlated with time after infestation and host density; attraction was only evident between 6 and 24 hr after infestation by 10 adult females per plant, but not before or after. Similarly, after 24 hr of infestation, wasps were attracted to plants with 10 to 20 female planthoppers, but not to plants with lower or higher numbers of female planthoppers. The attractive time periods and densities may be correlated with the survival chances of the wasps' offspring, which do not survive if the plants die before the wasps emerge. Wasps were also attracted to undamaged mature leaves of a rice plant when one of the other mature leaves had been infested by 10 N. lugens for 1 d, implying that the volatile cues involved in host location by the parasitoid are systemically released. Collection and analyses of volatiles revealed that 1 d of N. lugens infestation did not result in the emission of new compounds or an increase in the total amount of volatiles, but rather the proportions among the compounds in the blend were altered. The total amounts and proportions of the chemicals were also affected by infestation duration. These changes in volatile profiles might provide the wasps with specific information on host habitat quality and thus could explain the observed behavioral responses of the parasitoid.  相似文献   

4.
Induced plant responses to attack by chewing insects have been intensively studied, but little is known about plant responses to nonchewing insects or to attack by multiple herbivores with different feeding habits. We examined volatile emissions by tobacco, Nicotiana tabacum, in response to feeding by the piercing–sucking insect western flower thrips (WFT), Frankliniella occidentalis, the chewing herbivore Heliothis virescens, and both herbivores simultaneously. In addition, we examined the effects of herbivore-induced plant defenses on host-plant selection by WFT. Plants responded to thrips feeding by consistently releasing five compounds. Simultaneous feeding by WFT and H. virescens elicited the same 11 compounds emitted in response to caterpillar feeding alone; however, two compounds, α-humulene and caryophyllene oxide, were produced in greater amounts in response to simultaneous herbivory. In choice tests, thrips consistently preferred uninduced plants over all other treatments and preferred plants damaged by caterpillars and those treated with caterpillar saliva over those treated with caterpillar regurgitant. The results are consistent with a previous finding that caterpillar regurgitant induces the release of significantly more volatile nicotine than plants damaged by caterpillars or plants treated with caterpillar saliva. A repellent effect of nicotine on WFT was confirmed by encircling unwounded plants with septa releasing volatile nicotine. Our results provide the first direct evidence that thrips feeding induces volatile responses and indicates that simultaneous herbivory by insects with different feeding habits can alter volatile emissions. In addition, the findings demonstrate that induced plant responses influence host-plant selection by WFT and suggest that the induction of volatile nicotine may play a role in this process.  相似文献   

5.
MAIZE GENES INDUCED BY HERBIVORY AND VOLICITIN   总被引:6,自引:0,他引:6  
  相似文献   

6.
Leaf alcohol (Z)-3-hexen-1-ol (Z-3-ol) is emitted by green plants upon mechanical damage. Exposure of intact maize plants to Z-3-ol induces the emission of a volatile blend that is typically released after caterpillar feeding and attracts natural enemies of the herbivores [herbivore-induced volatile organic compounds (HI-VOC)]. Thus, it has been suggested that Z-3-ol might have a function in indirect plant defense mediating plant–plant signaling and intraplant information transfer. Here, we demonstrate that HI-VOC induction by Z-3-ol is synergized by the phytohormone ethylene. Exposure to Z-3-ol at doses of 100 and 250 nmol induced HI-VOC emission in intact maize plants. HI-VOC emissions increased by 2.5-fold when ethylene was added. The effect of ethylene was more pronounced (5.1- to 6.6-fold) when only total sesquiterpene release was considered. In contrast, ethylene alone had no inductive effect but rather decreased the emission of the constitutive maize volatile linalool. We suggest that ethylene plays a synergistic role in plant–plant signaling mediated by green leaf volatiles.  相似文献   

7.
Induction of plant volatiles by leaf-chewing caterpillars is well documented. However, there is much less information about volatile induction by insects with different feeding habits. We studied the induction of plant volatiles by a piercing–sucking insect, the western tarnished plant bug Lygus hesperus Knight. Adults of both genders and nymphs of Lygus induced the local emission of a blend of volatiles from both cotton and maize. Feeding by Lygus also induced the systemic emission of volatiles that was similar but less complex than the blend emitted at the site of feeding. Infestation by mated, mature adult females (>4 days old), but not by nymphs or mature males, caused detectable emission of -pinene, myrcene, and (E)--caryophyllene, compounds that are stored in the glands of cotton tissue. This indicated that damage to glands in the petiole and leaf by the female ovipositor, rather than feeding, contributed significantly to the emission of these volatiles. Girdling the plant stem to disrupt phloem transport markedly decreased the movement of 14C-labeled photosynthetic products to the apex of the plant, and this treatment also markedly reduced the amount of systemically induced volatiles caused by Lygus feeding. Lygus salivary gland extracts were capable of inducing emission of the same volatile blend as measured for plants infested by feeding insects or treated with volicitin, an elicitor isolated from caterpillar regurgitant. The results indicate that L. hesperus is capable of inducing the emission of plant volatiles and that induction is caused by an elicitor that is contained in the insect salivary gland.  相似文献   

8.
Induced volatile terpenes have been commonly reported among diverse agricultural plant species, but less commonly investigated in odorous plant species. Odorous plants synthesize and constitutively store relatively large amounts of volatiles, and these may play a role in defense against herbivores. We examined the effect of herbivory and methyl jasmonate (MeJA) exposure on the release of volatile organic compounds (VOCs) in the marsh elder, Iva frutescens, which contains numerous constitutive VOCs, mainly mono- and sesquiterpenes. Our specific goal was to test for the presence of inducible VOCs in a naturally occurring plant already armed with VOCs. The abundant, native specialist leaf beetle Paria aterrima was used in herbivore induction trials. VOCs were sampled from herbivore wounded and unwounded, and from MeJA treated and untreated I. frutescens. Total VOC emissions were significantly greater in response to herbivory and MeJA treatment compared to unwounded controls. Herbivore wounding caused a substantial shift in the emission profile (42 VOCs from wounded, compared to 8 VOCs from unwounded I. frutescens), and MeJA had a similar yet less substantial influence on the emission pattern (28 VOCs from MeJA treated compared to 8 VOCs from untreated I. frutescens). Constitutive VOC emissions predominated, but some VOCs were detected only in response to herbivory and MeJA treatment, suggesting de novo synthesis. Several VOCs exhibited a delayed emission profile in contrast to the rapid release of constitutive VOCs, and principal components analysis revealed they were not associated with constitutive emissions. While I. frutescens contains many constitutive VOCs that are released immediately in response to herbivory, it also produces novel VOCs in response to feeding by the specialist P. aterrima and MeJA treatment.  相似文献   

9.
Common pigweed,Amaranthus hybridus L., is a favorite host of the beet army worm (BAW),Spodoptera exigua L. Chemicals extracted from homogenized pigweed with distilled water, ethanol, or dichloromethane and sprayed back on pigweed deterred oviposition by the BAW. Similarly, water extracts of frass from conspecific larvae or southern armyworm (SAW) larvae,S. eridania (Cramer), fed pigweed leaves and sprayed back on pigweed plants also deterred BAW oviposition, thus confirming that deterrence was due to plant allelochemics rather than specific compounds associated with the metabolic or excretory products of the larvae. Confirmation of the presence of oviposition-deterring chemicals in pigweed was used to explain a previously observed seasonal displacement of BAW by SAW on pigweed in the field.Mention of a commercial or proprietary product does not constitute an endorsement by the USDA.  相似文献   

10.
Arbuscular mycorrhizal fungi can strongly influence the metabolism of their host plant, but their effect on plant defense mechanisms has not yet been thoroughly investigated. We studied how the principal direct defenses (iridoid glycosides) and indirect defenses (volatile organic compounds) of Plantago lanceolata L. are affected by insect herbivory and mechanical wounding. Volatile compounds were collected and quantified from mycorrhizal and non-mycorrhizal P. lanceolata plants that underwent three different treatments: 1) insect herbivory, 2) mechanical wounding, or 3) no damage. The iridoids aucubin and catalpol were extracted and quantified from the same plants. Emission of terpenoid volatiles was significantly higher after insect herbivory than after the other treatments. However, herbivore-damaged mycorrhizal plants emitted lower amounts of sesquiterpenes, but not monoterpenes, than herbivore-damaged non-mycorrhizal plants. In contrast, mycorrhizal infection increased the emission of the green leaf volatile (Z)-3-hexenyl acetate in untreated control plants, making it comparable to emission from mechanically wounded or herbivore-damaged plants whether or not they had mycorrhizal associates. Neither mycorrhization nor treatment had any influence on the levels of iridoid glycosides. Thus, mycorrhizal infection did not have any effect on the levels of direct defense compounds measured in P. lanceolata. However, the large decline in herbivore-induced sesquiterpene emission may have important implications for the indirect defense potential of this species.  相似文献   

11.
Effects of Genetic Modification on Herbivore-Induced Volatiles from Maize   总被引:3,自引:0,他引:3  
Large-scale implementation of transgenic crop varieties raises concerns about possible nontarget effects on other organisms. This study examines the effects of genetic modification on plant volatile production and its potential impact on arthropod population dynamics. We compared herbivore-induced volatile emissions from Bacillus thuringiensis Berliner (Bt) maize plants to those from a nontransformed isoline following exposure to various types of leaf damage. When equal numbers of Helicoverpa zea Boddie (Lepidoptera: Noctuidae) larvae fed on Bt and non-Bt maize, volatile emissions were significantly lower in the transgenic plants, which also exhibited less leaf damage. When damage levels were controlled by adding more larvae to Bt plants, the plants' volatile emissions increased but displayed significant differences from those of nontransgenic plants. Significantly higher amounts of linalool, β-myrcene, and geranyl acetate were released from transgenic maize than from non-Bt plants. Manipulating the duration of feeding by individual larvae to produce similar damage patterns resulted in similar volatile profiles for Bt and non-Bt plants. Controlling damage levels more precisely by mechanically wounding leaves and applying larval regurgitant likewise resulted in similar emission patterns for Bt and non-Bt maize. Overall, changes in the herbivore-induced volatile profiles of Bt maize appeared to be a consequence of altered larval feeding behavior rather than of changes in biochemical plant defense pathways. The implications of these findings for understanding the impacts of plant-mediated cues on pest and natural enemy behavior in transgenic crop systems are discussed.  相似文献   

12.
Volatile seed germination inhibitors from plant residues   总被引:12,自引:0,他引:12  
Volatile emissions from residues of the winter cover legumes, Berseem clover (Trifolium alexandrinum L.), hairy vetch [Vicia hirsuta (L.) S.F. Gray], and crimson clover (Trifolium incarnatum L.), inhibited germination and seedling development of onion, carrot, and tomato. Using GC-MS, 31 C2-C10 hydrocarbons, alcohols, aldehydes, ketones, esters, furans, and monoterpenes were identified in these residue emission mixtures. Mixtures of similar compounds were found in the volatiles released by herbicide-treated aerial and root residues of purple nutsedge (Cyperus rotundus L.) and the late-season woody stems and roots of cotton (Gossypium hirsutum L.). Vapor-phase onion, carrot, and tomato seed germination bioassays were used to determine the time- and concentration-dependent inhibition potential of 33 compounds that were either identified in the plant residue emissions or were structurally similar to identified compounds. Cumulative results of the bioassays showed that (E)-2-hexenal was the most inhibitory volatile tested, followed by nonanal, 3-methylbutanal, and ethyl 2-methylbutyrate. All the volatile mixtures examined contained at least one compound that greatly inhibited seed germination.Mention of a commercial or proprietary product does not constitute an endorsement by the U.S. Department of Agriculture.  相似文献   

13.
Herbivore feeding activates plant defenses at the site of damage as well as systemically. Systemic defenses can be induced internally by signals transported via phloem or xylem, or externally transmitted by volatiles emitted from the damaged tissues. We investigated the role of herbivore-induced plant volatiles (HIPVs) in activating a defense response between branches in blueberry plants. Blueberries are perennial shrubs that grow by initiating adventitious shoots from a basal crown, which produce new lateral branches. This type of growth constrains vascular connections between shoots and branches within plants. While we found that leaves within a branch were highly connected, vascular connectivity was limited between branches within shoots and absent between branches from different shoots. Larval feeding by gypsy moth, exogenous methyl jasmonate, and mechanical damage differentially induced volatile emissions in blueberry plants, and there was a positive correlation between amount of insect damage and volatile emission rates. Herbivore damage did not affect systemic defense induction when we isolated systemic branches from external exposure to HIPVs. Thus, internal signals were not capable of triggering systemic defenses among branches. However, exposure of branches to HIPVs from an adjacent branch decreased larval consumption by 70% compared to those exposed to volatiles from undamaged branches. This reduction in leaf consumption did not result in decreased volatile emissions, indicating that leaves became more responsive to herbivory (or “primed”) after being exposed to HIPVs. Chemical profiles of leaves damaged by gypsy moth caterpillars, exposed to HIPVs, or non-damaged controls revealed that HIPV-exposed leaves had greater chemical similarities to damaged leaves than to control leaves. Insect-damaged leaves and young HIPV-exposed leaves had higher amounts of endogenous cis-jasmonic acid compared to undamaged and non-exposed leaves, respectively. Our results show that exposure to HIPVs triggered systemic induction of direct defenses against gypsy moth and primed volatile emissions, which can be an indirect defense. Blueberry plants appear to rely on HIPVs as external signals for inter-branch communication.  相似文献   

14.
Many plant species produce volatile organic compounds after being damaged by herbivores. The production of volatiles also may be induced by exposing plants to the plant hormone, jasmonic acid, or its volatile ester, methyl jasmonate. This study addresses the induction of the production volatile organic compounds among genetic lines of Datura wrightii. Within populations, some plants produce glandular trichomes, whereas others produce nonglandular trichomes, and trichome phenotype is controlled by a single dominant gene. Glandular trichomes not only confer resistance to some herbivorous insects, but they also inhibit many natural enemies of those herbivores. Because of the potential benefit of natural enemies that use volatile cues to find individuals of the non-glandular phenotype, it is reasonable to ask if plants of D. wrightii that differ in trichome morphology might produce different blends of volatile compounds. Volatile compounds were collected from eight genetic lines of plants that had been backcrossed for three generations. Volatiles were collected from pairs of sibling plants before and after insect damage or treatment with methyl jasmonate. Within each pair, one sib expressed glandular trichomes and the other expressed nonglandular trichomes. Overall, plants produced an array of at least 17 compounds, most of which were sesquiterpenes. Total production of volatiles increased from 3.9- to 16.2-fold among genetic lines after insect damage and from 3.6- to 32-fold in plants treated with methyl jasmonate. The most abundant compound was (E)-β-caryophyllene. This single compound comprised from 17 to 59% of the volatiles from insect-damaged plants and from 24 to 88% of the volatiles from plants treated with methyl jasmonate, depending upon genetic line. The production of (E)-β-caryophyllene by the original male parents of the eight genetic lines was significantly related to the mean production of their third-generation backcross progeny indicating that the variation in the production of (E)-β-caryophyllene was inherited. Blends did not differ qualitatively or quantitatively between sibs expressing glandular or nonglandular trichomes.  相似文献   

15.
Cotton plants under herbivore attack release volatile semiochemicals that attract natural enemies of the herbivores to the damaged plant. The volatiles released in response to herbivory are not only released from the damaged leaves but from the entire cotton plant. We found that cotton plants that released myrcene, (Z)-3-hexenyl acetate, (E)--ocimene, linalool, (E)-4,8-dimethyl-1,3,7-nonatriene, (E)--farnesene, and (E, E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene systemically from undamaged leaves of caterpillar damaged plants were attractive to the generalist parasitoid Cotesia marginiventris and the specialist parasitoid Microplitis croceipes. Plants from which the caterpillar damaged leaves were removed and that released those compounds systemically were significantly preferred over undamaged control plants in two-choice experiments in a flight tunnel. Artificially damaged cotton plants that released green leafy volatiles and constitutive terpenoids were less attractive for M. croceipes and C. marginiventris. Only C. marginiventris preferred artificially damaged plants over undamaged control plants, whereas M. croceipes showed no preference. The apparent lack of specificity of systemically released compounds in response to different herbivores feeding on the lower leaves is discussed.  相似文献   

16.
Carnivorous arthropods use volatile infochemicals emitted from prey-infested plants in their foraging behavior. Although several volatile components are common among plant species, the compositions differ among prey–plant complexes. Studies showed that the predatory mite Neoseiulus womersleyi is attracted only to previously experienced plant volatiles. In this study, we identified the attractant components in prey-induced plant volatiles of two prey–plant complexes. N. womersleyi reared on Tetranychus kanzawai-infested tea leaves showed significant preference for a mixture of three synthetic compounds [mimics of the T. kanzawai-induced tea leaves volatiles: (E)-β-ocimene, (E)-4,8-dimethyl-1,3,7-nonatriene (DMNT), and (E,E)-α-farnesene] at a level comparable to that for T. kanzawai-induced tea plant volatiles. However, mixtures lacking any of these compounds did not attract the predatory mites. Likewise, N. womersleyi reared on T. urticae-infested kidney bean plants showed a significant preference for a mixture of four synthetic compounds [mimics of the T. urticae-induced kidney bean volatiles: DMNT, methyl salicylate (MeSA), β-caryophyllene, and (E,E)-4,8,12-trimethyl-1,3,7,11-tridecatetraene] at a level comparable to that for T. urticae-induced kidney bean volatiles. The absence of any of the four compounds resulted in no attraction. These results indicate that N. womersleyi can use at least four volatile components to identify prey-infested plants.  相似文献   

17.
The quantity, ratios, diurnal rhythm, and correlation with foliage weight of volatile chemicals emitted by young and mature intact potato plants were determined during the fourth (morning), eighth (noon) and fourteenth (afternoon) hour of the photophase. The major compounds released by young and mature intact potato plants, Solanum tuberosum, during the photophase, were the sesquiterpene hydrocarbons -caryophyllene, (E)--farnesene, (Z,Z)--farnesene, germacrene-D, -bisabolene, and an unknown compound A. The quantity of the major volatile chemicals emitted was subject to diurnal rhythm. In young potatoes, all major compounds except unknown A showed a steady increase during the photophase, with afternoon production significantly higher than that in the morning. In mature potatoes, all compounds, including unknown A, were significantly higher during the afternoon when compared to morning. Although the variability in quantity of volatile chemicals released between individual plants was very high, the ratios were stable between the sets of replicates. The correlation of foliage weight and emission of the volatile compounds was affected by the developmental stage of the plant and the time of the day. There was a positive correlation between foliage weight and production of volatile chemicals that was strongly evident in mature potato plants, and much less evident in young plants during morning and afternoon. No positive correlation between foliage weight and production of volatile chemicals was observed during noon for either age tested. The factors affecting the volatile emissions of intact potato plants are discussed.  相似文献   

18.
Herbivore-induced plant volatiles can function as indirect defense signals that attract natural enemies of herbivores. Several parasitoids are known to exploit these plant-provided cues to locate their hosts. One such parasitoid is the generalist Cotesia marginiventris, which is, among others, attracted to maize volatiles induced by caterpillar damage. Maize plants can be induced to produce the same blend of attractive volatiles by treating them with regurgitant of Spodoptera species. We collected and analyzed the regurgitant-induced emissions of two plant species (cowpea and maize) and of eight Mexican maize varieties and found significant differences among their volatile emissions, both in terms of total quantity and the quality of the blends. In a Y-tube olfactometer, the odors of the same artificially induced plant species and Mexican varieties were offered in dual choice experiments to naïve mated females of C. marginiventris. Wasps preferred cowpea over maize odor and, in 3 of 12 combinations with the maize varieties, they showed a preference for the odors of one of the varieties. A comparison of the odor collection with results from the behavioral assays indicates that not only the quantity of the volatile emissions, but also the quality composition of the volatile blends is important for attraction of C. marginiventris. The results are discussed in the context of the possibility of breeding crop varieties that are particularly attractive to parasitoids.  相似文献   

19.
When attacked by herbivorous insects, many plants emit volatile compounds that are used as cues by predators and parasitoids foraging for prey or hosts. While such interactions have been demonstrated in several host–plant complexes, in most studies, the herbivores involved are leaf-feeding arthropods. We studied the long-range plant volatiles involved in host location in a system based on a very different interaction since the herbivore is a fly whose larvae feed on the roots of cole plants in the cabbage root fly, Delia radicum L. (Diptera: Anthomyiidae). The parasitoid studied is Trybliographa rapae Westwood (Hymenoptera: Figitidae), a specialist larval endoparasitoid of D. radicum. Using a four-arm olfactometer, the attraction of naive T. rapae females toward uninfested and infested turnip plants was investigated. T. rapae females were not attracted to volatiles emanating from uninfested plants, whether presented as whole plants, roots, or leaves. In contrast, they were highly attracted to volatiles emitted by roots infested with D. radicum larvae, by undamaged parts of infested roots, and by undamaged leaves of infested plants. The production of parasitoid-attracting volatiles appeared to be systemic in this particular tritrophic system. The possible factors triggering this volatile emission were also investigated. Volatiles from leaves of water-stressed plants and artificially damaged plants were not attractive to T. rapae females, while volatiles emitted by leaves of artificially damaged plants treated with crushed D. radicum larvae were highly attractive. However, T. rapae females were not attracted to volatiles emitted by artificially damaged plants treated only with crushed salivary glands from D. radicum larvae. These results demonstrate the systemic production of herbivore-induced volatiles in this host-plant complex. Although the emission of parasitoid attracting volatiles is induced by factors present in the herbivorous host, their exact origin remains unclear. The probable nature of the volatiles involved and the possible origin of the elicitor of volatiles release are discussed.  相似文献   

20.
Regurgitate of corn-fed beet armyworm (BAW) caterpillars,Spodoptera exigua, when applied to damaged sites of corn (Zea mays) seedlings, causes the release of relatively large amounts of terpenes by the seedlings several hours later. This plant response could be induced by merely placing the cut stem of seedlings in a solution of BAW regurgitate for 12 hr, a response that could not be induced by placing seedlings in water only. Regurgitate of BAW fed various diets, including a minimal diet of filter paper, were all active. However, seedlings placed in corn leaf juice, BAW hemolymph, or BAW feces extract released significantly smaller amounts of terpenes than did seedlings placed in BAW regurgitate. These results indicate that the active components are present in relatively large concentrations in regurgitate and that they are not related to the food source. Furthermore, regurgitate from several other species of caterpillars (Spodoptera frugiperda, Helicoverpa zea,Trichoplusia ni, andAnticarsia gemmatalis) as well as from the grasshopperSchistocerca americana induced the release of significant amounts of terpenes in corn seedlings. The release of these volatiles, therefore, appears to be a general response to attack by phytophagous insects. The terpene-releasing corn seedlings were highly attractive to the generalist parasitoidCotesia marginiventris and to the specialized parasitoidMicroplitis croceipes. This study confirms a systemic herbivore-elicited release of terpenes in corn. It is proposed that such chemicals serve multifunctional purposes that directly and indirectly protect plants against herbivorous arthropods and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号