首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We screened the aldolase B gene in 14 unrelated Italian patients with hereditary fructose intolerance (HFI), and found two novel disease related mutations: a single nucleotide deletion in exon 2 (delta A20) that leads to an early stop codon, and a C-->T transition in exon 8 that substitutes an Arg with a Trp residue at codon 303 (R303W).  相似文献   

2.
We identified two mutations in the CYP19 gene responsible for aromatase deficiency in an 18-year-old 46,XX female with ambiguous external genitalia at birth, primary amenorrhea and sexual infantilism, and polycystic ovaries. The coding exons, namely exons II-X, of the CYP19 gene were amplified by PCR from genomic DNA and sequenced directly. Direct sequencing of the amplified DNA from the patient revealed two single-base changes, at bp 1303 (C-->T) and bp 1310 (G-->A) in exon X, which were newly found missense mutations and resulted in codon changes of R435C and C437Y, respectively. Subcloning followed by sequencing confirmed that the patient is a compound heterozygote. The results of restriction fragment length polymorphism analysis and direct sequencing of the amplified exon X DNA from the patient's mother indicate maternal inheritance of the R435C mutation. Transient expression experiments showed that the R435C mutant protein had approximately 1.1% of the activity of the wild type, whereas C437Y was totally inactive. Cysteine-437 is the conserved cysteine in the heme-binding region believed to serve as the fifth coordinating ligand of the heme iron. To our knowledge, this patient is the first adult to have described the cardinal features of a syndrome of aromatase deficiency. Recognition that such defects exist will lead to a better understanding of the role of this enzyme in human development and disease.  相似文献   

3.
This report concerns one new mutation in the tyrosine hydroxylase (TH) gene in three patients originating from three unrelated Dutch families with autosomal recessive L-DOPA-responsive dystonia (DRD). In this study, all exons of the TH gene were amplified by the polymerase chain reaction and subjected to analyses by single-strand conformation polymorphism. An aberrant migration pattern was observed for exon 6 of the TH gene in all patients. Direct sequencing of the coding region of exon 6 revealed the presence of one novel missense mutation. An a698g transition resulted in the substitution of the evolutionary conserved arginine 233 by a histidine (R233H). All patients were homozygous for the mutation. This new mutation in the TH gene was confirmed by restriction enzyme analysis with the restriction enzyme HhaI. Thus, a high proportion of defective TH alleles may be R233H in The Netherlands.  相似文献   

4.
Using a PCR strategy based on an initial set of 15 couples of primers designed from the known cDNA sequence, we identified 18 introns in the human RET proto-oncogene and sequenced the corresponding 5' and 3' exon-intron junctions. This approach was successful in locating all the introns contained in fragments short enough to be amplified by PCR. Thus 19 exons were identified which, together with the previously reported exon subjected to alternative splicing, brings the total number of RET exons to 20. This information is relevant for the screening of recently reported missense mutations of RET which cause Multiple Endocrine Neoplasia 2A (MEN2A) and for the search of additional point mutations of the same gene which might cause two other neural crest disorders, MEN2B and Hirschsprung disease, mapping in the same region as MEN2A.  相似文献   

5.
Recently it has been reported that a missense G(88)C mutation within exon 3 and a missense G(209)A mutation within exon 4 of the alpha-synuclein gene were linked to familial Parkinson's Disease (PD). We decided to investigate if these and any other mutations in exons 3 and 4 of the alpha-synuclein gene could be detected in sixty two sporadic PD and dementia with Lewy bodies (DLB) patients. Four cases of familial DLB were also studied, two of which were from the same family. Single stranded conformational polymorphism, DNA sequencing analyses and PCR-RFLP of exons 3 and 4 failed to reveal any nucleotide changes. However, three nucleotide differences occurred in the intron 4 sequence compared to the published sequence. This study adds further support to the idea that these particular mutation in the alpha-synuclein gene are a rare case of PD and now, as we have shown here, also of DLB.  相似文献   

6.
To evaluate mutations in the low density lipoprotein receptor (LDL-R) gene in moderate primary hypercholesterolemia, a combination of polymerase chain reaction (PCR), single-strand conformation polymorphism (SSCP) and direct sequencing, was used to screen the LDL-R gene in a selected population of 82 unrelated individuals with moderate elevation of plasma LDL-C [mean 4.55 +/- 0.55 mmol/l (176.4 +/- 21.6 mg/dl)]. Four subjects (5%) were found to be heterozygotes for missense mutations in the LDL-R gene. These mutations were located in four different exons (exons 6, 7, 15 and 17) and all alters highly conserved residues of LDL-R protein. None of these mutations were detected in 79 normocholesterolemic individuals. The mutation in exon 15 (T705I) was previously reported in a compound heterozygote for familial hypercholesterolemia (FH). In the proband carrying the mutation in exon 17 (R793Q), an in vivo LDL turnover study was performed and it demonstrated a reduction of LDL catabolism. These findings demonstrate that mutations in the LDL-R may occur in primary moderate hypercholesterolemia. They also extend the concept that some FH patients may present with a mild phenotype.  相似文献   

7.
We report studies of two unrelated Japanese patients with 17alpha-hydroxylase deficiency caused by mutations of the 17alpha-hydroxylase (CYP17) gene. We amplified all eight exons of the CYP17 gene, including the exon-intron boundaries, by the polymerase chain reaction and determined their nucleotide sequences. Patient 1 had novel, compound heterozygous mutations of the CYP17 gene. One mutant allele had a guanine to thymine transversion at position +5 in the splice donor site of intron 2. This splice-site mutation caused exon 2 skipping, as shown by in vitro minigene expression analysis of an allelic construct, resulting in a frameshift and introducing a premature stop codon (TAG) 60 bp downstream from the exon 1-3 boundary. The other allele had a missense mutation of His (CAC) to Leu (CTC) at codon 373 in exon 6. These two mutations abolished the 17alpha-hydroxylase and 17,20-lyase activities. Restriction fragment length polymorphism (RFLP) analysis with a mismatch oligonucleotide showed that the patient's mother and brother carried the splice-site mutation, but not the missense mutation. Patient 2 was homozygous for a novel 1-bp deletion (cytosine) at codon 131 in exon 2. This 1-bp deletion produces a frameshift in translation and introduces a premature stop codon (TAG) proximal to the highly conserved heme iron-binding cysteine at codon 442 in microsomal cytochrome P450 steroid 17alpha-hydroxylase (P450c17). RFLP analysis showed that the mother was heterozygous for the mutation.  相似文献   

8.
Crigler-Najjar syndrome type 1 (CN-1) is a recessively inherited, potentially lethal disorder characterized by severe unconjugated hyperbilirubinemia resulting from deficiency of the hepatic enzyme bilirubin-UDP-glucuronosyltransferase. In all CN-1 patients studied, structural mutations in one of the five exons of the gene (UGT1A1) encoding the uridinediphosphoglucuronate glucuronosyltransferase (UGT) isoform bilirubin-UGT1 were implicated in the absence or inactivation of the enzyme. We report two patients in whom CN-1 is caused, instead, by mutations in the noncoding intronic region of the UGT1A1 gene. One patient (A) was homozygous for a G-->C mutation at the splice-donor site in the intron, between exon 1 and exon 2. The other patient (B) was heterozygous for an A-->G shift at the splice-acceptor site in intron 3, and in the second allele a premature translation-termination codon in exon 1 was identified. Bilirubin-UGT1 mRNA is difficult to obtain, since it is expressed in the liver only. To determine the effects of these splice-junction mutations, we amplified genomic DNA of the relevant splice junctions. The amplicons were expressed in COS-7 cells, and the expressed mRNAs were analyzed. In both cases, splice-site mutations led to the use of cryptic splice sites, with consequent deletions in the processed mRNA. This is the first report of intronic mutations causing CN-1 and of the determination of the consequences of these mutations on mRNA structure, by ex vivo expression.  相似文献   

9.
Rhodopsin kinase (RK), a rod photoreceptor cytosolic enzyme, plays a key role in the normal deactivation and recovery of the photoreceptor after exposure to light. To date, three different mutations in the RK locus have been associated with Oguchi disease, an autosomal recessive form of stationary night blindness in man characterized in part by delayed photoreceptor recovery [Yamamoto, S. , Sippel, K. C., Berson, E. L. & Dryja, T. P. (1997) Nat. Genet. 15, 175-178]. Two of the mutations involve exon 5, and the remaining mutation occurs in exon 7. Known exon 5 mutations include the deletion of the entire exon sequence [HRK(X5 del)] and a missense change leading to a Val380Asp substitution in the encoded product (HRKV380D). The mutation in exon 7 is a 4-bp deletion in codon 536 leading to premature termination of the encoded polypeptide [HRKS536(4-bp del)]. To provide biochemical evidence for pathogenicity of these mutations, wild-type human rhodopsin kinase (HRK) and mutant forms HRKV380D and HRKS536(4-bp del) were expressed in COS7 cells and their activities were compared. Wild-type HRK catalyzed light-dependent phosphorylation of rhodopsin efficiently. In contrast, both mutant proteins were markedly deficient in catalytic activity with HRKV380D showing virtually no detectible activity and HRKS536(4-bp del) only minimal light-dependent activity. These results provide biochemical evidence to support the pathogenicity of the RK mutations in man.  相似文献   

10.
We have identified five mutations in antithrombin by direct sequencing of exons amplified using polymerase chain reaction. Four of these mutations are associated with thrombosis, three cause type I antithrombin deficiency and one has features of a type II deficiency. The fifth variant appears to have no functional consequences. The type I mutations are in exon 2, exon 3b and exon 4. The first of these is a nonsense mutation causing substitution of a Tyr-->stop at position -16 within the secretion signal sequence. The second is a missense mutation resulting in the substitution Cys-->Ser at position 247. This disrupts the disulphide bond with Cys 430 leaving a free cysteine residue and the C-terminus unconstrained. The third type I mutation is an in-frame deletion resulting in the loss of Ile 186. This is a highly conserved residue in the serpin superfamily and will predictably result in the disruption of the F-helix. The fourth mutation, in exon 3a, results in the substitution of Ser 162 by Asn. This residue is sited in the E-helix and the replacement of the buried side chain of serine by the larger asparagine side chain will predictably cause structural perturbation. The last example, Val 415-->Asp, was an incidental finding as a follow up investigation of a nephrotic patient. Although one other member of the family also had the mutation there was no linked history of thrombotic disease.  相似文献   

11.
The second most common cause of congenital adrenal hyperplasia is 11 beta-hydroxylase deficiency, an autosomal recessive disorder. We performed genetic analysis of CYP11B1, the gene encoding steroid 11 beta-hydroxylase, in three patients with classic 11 beta-hydroxylase deficiency. Herein we describe the first splice donor site mutation, a new nonsense mutation, and a new missense mutation in this disorder. An African-American patient was found to be a compound heterozygote for a codon 318 + 1G --> A substitution at the 5'-splice donor site of intron 5, in combination with Q356X, a nonsense mutation previously reported in an African-American patient. A Caucasian patient was found to be a compound heterozygote with a novel missense mutation, T318R, in combination with a previously reported 28-bp deletion in exon 2. A different mutation at codon 318 (T318M) has been described previously. A Caucasian patient was heterozygous for a novel nonsense mutation (Q19X) in exon 2. The second mutation was not identified in this patient. Multiple apparent polymorphisms were also observed. Two of these polymorphisms in CYP11B1 represent sequences from CYP11B2, suggesting that gene conversion may have occurred. In summary, we have identified three novel mutations and two previously reported mutations in CYP11B1 patients with 11 beta-hydroxylase deficiency. Our data suggest the presence of a mutational hot spot at codon 318 of CYP11B1, and the possibility of a founder effect in frequently identified mutations.  相似文献   

12.
We have used single strand conformation polymorphism analysis to study the 27 exons of the RB1 gene in individuals from a family showing 'mild' expression of the retinoblastoma phenotype. In this family affected individuals developed unilateral tumors and, as a result of linkage analysis, unaffected mutation carriers were also identified within the pedigree. A single band shift using SSCP was identified in exon 21 which resulted in a missense mutation converting a cys-->arg at nucleotide position 28 in the exon. The mutation destroyed an NdeI restriction enzyme site. Analysis of all family members demonstrated that the missense mutation co-segregated with patients with tumors or who, as a result of linkage analysis had been predicted to carry the predisposing mutation. These observations point to another region of the RB1 gene where mutations only modify the function of the gene and raise important questions for genetic counseling in families with these distinctive phenotypes.  相似文献   

13.
In the present study DNA from 281 unrelated haemophilia A patients including 15 inhibitor patients has been analysed by Southern blotting technique. Using various restriction enzymes, cloned factor VIII cDNA probes and genomic fragments we have identified 14 mutations. Six of the mutations are novel partial factor VIII gene deletions. One deletion affects exon 1, two deletions concern exon 6, another deletion, of which breakpoints are sequenced, takes part of exon 16 and two deletions affect exon 26. Besides the deletions, eight point mutations have been found at the TaqI restriction sites of exons 18, 24 and 26. Five C-->T mutations resulted in nonsense mutations, one in exon 18, one in exon 26 and three in exon 24. Two G-->A mutations caused a missense mutation in exon 24 leading to an arginine/glutamine exchange. Although two patients showed this mutation, their clinical phenotypes were different, possibly due to an additional unidentified sequence polymorphism. A G-->T mutation in exon 26 substituted the arginine with leucine. All deletions and seven of the point mutations are associated with severe disease with a detectable inhibitor in the patient with the TaqI-point mutation in exon 18. One of the G-->A mutations is associated with mild haemophilia but the patient also has developed an inhibitor. Amongst these mutations the origin of the mutation could be determined in four kindred, one of which showed maternal mosaicism.  相似文献   

14.
Propionyl-CoA carboxylase (PCC) is a mitochondrial biotin-dependent enzyme composed of an equal number of alpha and beta subunits. Mutations in the PCCA (alpha subunit) or PCCB (beta subunit) gene can cause the inherited metabolic disease propionic acidemia (PA), which can be life threatening in the neonatal period. Lack of data on the genomic structure of PCCB has been a significant impediment to full characterization of PCCB mutant chromosomes. In this study, we describe the genomic organization of the coding sequence of the human PCCB gene and the characterization of mutations causing PA in a total of 29 unrelated patients-21 from Spain and 8 from Latin America. The implementation of long-distance PCR has allowed us to amplify the regions encompassing the exon/intron boundaries and all the exons. The gene consists of 15 exons of 57-183 bp in size. All splice sites are consistent with the gt/ag rule. The availability of the intron sequences flanking each exon has provided the basis for implementation of screening for mutations in the PCCB gene. A total of 56/58 mutant chromosomes studied have been defined, with a total of 16 different mutations detected. The mutation spectrum includes one insertion/deletion, two insertions, 10 missense mutations, one nonsense mutation, and two splicing defects. Thirteen of these mutations correspond to those not described yet in other populations. The mutation profile found in the chromosomes from the Latin American patients basically resembles that of the Spanish patients.  相似文献   

15.
Albright hereditary osteodystrophy (AHO) is an inherited disorder associated with deficient activity of the alpha-subunit of the guanine nucleotide-binding regulatory protein (Gs alpha) that couples receptors to adenylyl cyclase. To identify mutations that lead to Gs alpha deficiency, we isolated genomic DNA from patients with AHO and used the polymerase chain reaction to amplify exons of the Gs alpha genes. DNA was amplified using intron-specific oligonucleotide primers flanking exons of the Gs alpha gene. To optimize our ability to detect mutations, one oligonucleotide from each primer pair was synthesized with a 5' GC-clamp. Amplified Gs alpha gene fragments were analyzed by denaturing gradient gel electrophoresis in order to detect mutations that alter the melting point of the double-stranded DNA fragment. Using this technique, we have identified and characterized three mutations and one neutral polymorphism. The polymorphism, located in exon 5, consisted of a T-->C substitution that conserves the isoleucine residue at codon 131 (ATT-->ATC). Two mutations were missense mutations, which in one family consisted of a nucleotide substitution (T-->C) in exon 4 that results in replacement of Leu by Pro at codon 99 of the Gs alpha molecule. Affected subjects in a second family had a single base (C-->T) mutation in exon 6 that resulted in replacement of Arg by Cys at codon 165. A 4-base pair deletion (GTGG) in exon 8 at position +214 was identified in one Gs alpha allele from each affected subject in the third family. This mutation causes a frameshift after the codon for Gln213 that results in a premature stop codon 81 base pair after the deletion. Immunoblot analysis of plasma membranes prepared from cultured fibroblasts or erythrocytes indicated that levels of immunoactive Gs alpha protein were decreased in all affected subjects. We conclude that heterogeneous mutations in the gene encoding Gs alpha, including deletions and single amino acid substitutions, are responsible for Gs alpha deficiency in AHO.  相似文献   

16.
Sanfilippo syndrome type B or mucopolysaccharidosis type IIIB (MPS IIIB) is one of a group of lysosomal storage disorders that are characterised by the inability to breakdown heparan sulphate. In MPS IIIB, there is a deficiency in the enzyme alpha-N-acetylglucosaminidase (NAGLU) and early clinical symptoms include aggressive behaviour and hyperactivity followed by progressive mental retardation. The disease is autosomal recessive and the gene for NAGLU, which is situated on chromosome 17q21, is approximately 8.5 kb in length and contains six exons. Primers were designed to amplify the entire coding region and intron/exon boundaries of the NAGLU gene in 10 fragments. The PCR products were analysed for sequence changes using SSCP analysis and fluorescent DNA sequencing technology. Sixteen different putative mutations were detected in DNA from 14 MPS IIIB patients, 12 of which have not been found previously. The mutations include four deletions (219-237del19, 334-358del25, 1335delC, 2099delA), two insertions (1447-1448insT, 1932-1933insGCTAC), two nonsense mutations (R297X, R626X), and eight missense mutations (F48C, Y140C, R234C, W268R, P521L, R565W, L591P, E705K). In this study, the Y140C, R297X, and R626X mutations were all found in more than one patient and together accounted for 25% of mutant alleles.  相似文献   

17.
18.
Germline point mutations in exons 10, 11, and 16 of the ret protooncogene have been identified as causative in multiple endocrine neoplasia type 2 and in familial medullary thyroid carcinoma (MTC). Somatic point mutations of the same gene, exclusively associated with codon 918 of exon 16, have also been reported in few cases of sporadic medullary thyroid carcinoma. We analyzed the blood and tumor DNA of 19 patients with sporadic MTC and 6 patients with primary parathyroid adenoma for point mutations at exons 10, 11, and 16 of the ret protooncogene by restriction analysis of the PCR-amplified product and by sequence analysis of exons 10 and 11. A Cys634-->Tyr mutation was found in both the tumoral and blood DNA of one patient, indicating that he was affected by an hereditary form of MTC, erroneously considered sporadic. In the other 18 patients with MTC, somatic point mutations of ret were found in 8 cases (44.4%). In 5 cases the mutation affected exon 16 (Met918-->Thr), and in 3 cases it affected exon 11 (Cys634-->Arg in 1 and Cys634-->Trp in 2); these 3 mutations were confirmed by sequence analysis. The remaining 10 patients had no mutation in exon 10 by either restriction analysis or sequence analysis. Clinical data showed that 75% of the patients whose tumor carried ret mutation had tumor recurrence and/or increased serum calcitonin concentrations during the postsurgical follow-up period as opposed to 10% of the patients without mutations (P < 0.02, by chi2 analysis). No ret mutation was found in the tumoral DNA from parathyroid adenomas. Our findings indicate that the somatic ret point mutation frequently found in sporadic MTC may affect not only exon 16 but also exon 11 and is associated with less favorable clinical outcome.  相似文献   

19.
OBJECTIVE: To establish a simple, accurate and rapid method for screening of the mutant genes in phenylketonuria (PKU). METHODS: Four exons harboring the mutations, Y204C (exon6, E6), R243Q(E7), Y356X(E11) and R413P(E12), were amplified by polymerase chain reaction (PCR) with incorporation of biotinylated deoxynucleotide(biotinylated-11-dUTP or biotinylated-14-dCTP). Hybridization between immobilized allele-specific oligonucleotide probes and biotin-labelled amplified DNA was performed and nonradioactively detected by a colorimetric reaction using streptavidin-alkaline phosphatase. RESULTS: The methods of non-radioactive reverse dot blot hybridization were established to screen the mutations. We detected the genotypes of five PKU patients and found that three of them carried R243Q mutation and one of the three also carried Y356X mutation. These results were confirmed by PCR-single strand conformation polymorphism. CONCLUSION: This method is suitable for rapid screening for common mutations in Chinese PKU patients.  相似文献   

20.
Progressive myoclonus epilepsy (EPM1) is an autosomal recessive disorder, characterized by severe, stimulus-sensitive myoclonus and tonic-clonic seizures. The EPM1 locus was mapped to within 0.3 cM from PFKL in chromosome 21q22.3. The gene for the proteinase inhibitor cystatin B was recently localized in the EPM1 critical region, and mutations were identified in two EPM1 families. We have identified six nucleotide changes in the cystatin B gene of non-Finnish EPM1 families from northern Africa and Europe. The 426G-->C change in exon 1 results in a Gly4Arg substitution and is the first missense mutation described that is associated with EPM1. Molecular modeling predicts that this substitution severely affects the contact of cystatin B with papain. Mutations in the invariant AG dinucleotides of the acceptor sites of introns 1 and 2 probably result in abnormal splicing. A deletion of two nucleotides in exon 3 produces a frameshift and truncates the protein. Therefore, these four mutations are all predicted to impair the production of functional protein. These mutations were found in 7 of the 29 unrelated EPM1 patients analyzed, in homozygosity in 1, and in heterozygosity in the others. The remaining two sequence changes, 431G-->T and 2575A-->G, probably represent polymorphic variants. In addition, a tandem repeat in the 5' UTR (CCCCGCCCCGCG) is present two or three times in normal alleles. It is peculiar that in the majority of patients no mutations exist within the exons and splice sites of the cystatin B gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号