共查询到16条相似文献,搜索用时 78 毫秒
1.
针对动态时间弯曲方法计算时间过长的问题,提出增量动态时间弯曲来度量较长时间序列之间的相似性。首先利用动态时间弯曲方法对历史时间序列数据进行相似性度量,得到相应的历史最优弯曲路径和路径中各元素的累积距离代价。其次,通过逆向弯曲度量方法完成当前序列数据 的相似性度量,结合历史数据信息找到与历史弯曲路径相交且度量时间序列距离为当前最小值的新路径,进而实现增量动态时间弯曲的相似性度量。该方法不仅具有良好的度量质量,还具有较高的时间效率。数值实验表明,对于大部分时间序列数据集,新方法的分类准确率和计算性能要优于经典动态时间弯曲。 相似文献
2.
3.
针对常用方法无法准确度量多元时间序列相似程度的问题,提出一种基于多维分段和动态权重动态时间弯曲距离的多元时间序列相似性度量方法.首先对多元时间序列进行多维分段拟合,选取拟合段的斜率、均值和时间跨度作为每一段的特征,在对多元时间序列降维的同时也保留了变量之间的相关性;然后提出一种动态权重动态时间弯曲距离度量方法计算多元时间序列特征矩阵之间的距离,避免了直接使用动态时间弯曲距离造成的畸形匹配问题.最终实验结果也验证了该方法在多种类型的数据集上都能取得较高的度量精度,表明了该方法的有效性. 相似文献
4.
时间序列数据挖掘中的动态时间弯曲研究综述 总被引:1,自引:1,他引:0
动态时间弯曲是一种重要的相似性度量方法,对时间序列数据挖掘的性能起着至为关键的作用,对其进行全面和深入的探索具有十分重要的理论意义和实际应用价值.首先简述动态时间弯曲算法的基本步骤,并分析其优点和存在的不足;然后,从动态时间弯曲度量效率的改进研究、度量效果的提升措施以及其在各个行业的应用研究等进行相关综述;最后,给出动态时间弯曲的进一步研究方向.通过对动态时间弯曲方法相关综述及分析,能为相似性度量、聚类和分类等时间序列数据挖掘技术提供必要的文献资料和理论基础. 相似文献
5.
为了进一步改善和提高基于模式的时间序列趋势相似性度量效果,在时间序列分段线性表示的基础上,依据分段子序列的均值及其线性拟合函数的导数符号,实现时间序列的分段模式化,以模式之间的异同性定义模式匹配距离,借鉴动态时间弯曲(Dynamic Time Warping,DTW)的动态规划原理,提出一种动态模式匹配方法(Dynamic Pattern Matching,DPM)。实验结果表明,该方法能够在不同压缩率条件下,准确度量等长时间序列的趋势相似性,而且时间消耗较低。时间序列不等长作为存在数据缺失的一种表现形式,该方法的度量效果与数据缺失比例之间的关系值得进一步的深入研究。 相似文献
6.
基于斜率表示的时间序列相似性度量方法 总被引:5,自引:0,他引:5
时间序列相似性搜索是数据挖掘领域的一个热点研究方向,相似性距离度量方法是其中的一个重要问题.针对含有大量噪声并存在数据缺失的高维多元时间序列数据,本文提出一种基于斜率表示的时间序列相似性度量方法.该方法是在线性分段的基础上,对两个序列间的斜率差进行加权,因而物理概念更为明确.文中还证明斜率距离完全满足相似性度量的基本准则.实例证明了算法的有效性. 相似文献
7.
8.
时间序列的相似性度量是时间序列数据挖掘研究中的一个重要问题,是进行序列查询、分类、预测的一项基础工作。寻求一种好的度量对提高挖掘任务的效率和准确性有着至关重要的意义。目前从事这方面的研究除了少许理论论述外,几乎都采用一种固定的方法,即提出具体要求并提供实验数据。然而,大多数实验方法不是使用范围有限就是侧重点不同。为了提供一个比较全面的实验验证,用1NN分类算法进行了大量的时间序列交叉验证实验,重新评估了其中的弹性度量,并使用不同应用领域的28个时间序列数据集进行比较,结果表明,该方法具有更高的准确性。 相似文献
9.
10.
基于事件的时间序列相似性度量方法 总被引:2,自引:0,他引:2
为了在时间序列相似性度量过程中更好地体现用户的需求,提高相似性度量的准确度,提出了基于事件的时间序列相似性度量方法(SMBE)。首先将用户的需求定义为事件,将原始时间序列转化为事件序列;然后,构建了基于事件序列的相似性度量模型(SMBE),SMBE定义了不同事件序列中各元素之间的相似性,并构成相应的相似性矩阵,对相似性矩阵进行搜索得到最优路径的值作为序列之间的相似性度量;最后,提出了基于SMBE的聚类方法。实验表明,在参数设置合理的情况下,能获得接近0.90的聚类精度。 相似文献
11.
动态时间弯曲算法(DTW)是一种常见的时间序列相似性度量方法,对数据挖掘任务起着至关重要的作用。针对现有DTW算法的时间复杂度高、度量精确度一般的特征,提出一种DTW下界函数的提前终止算法(LB_ESDTW)。引入提前终止思想,提高算法的执行效率;再在提前终止算法思想的基础上,与DTW下界函数相结合,提出一种基于提前终止DTW的下界函数算法(LB_ESDTW)。该算法在保证高效的运行时间效率的同时,也使得算法的度量准确率得到了提升。实验结果表明,LB_ESDTW在绝大部分时间序列数据集中,都表现出良好的适应性,针对不同类别的时间序列,都能有良好的度量性能。 相似文献
12.
13.
相似性搜索在股票交易行情、网络安全、传感器网络等众多领域应用广泛.由于这些领域中产生的数据具有无限的、连续的、快速的、实时的特性,所以需要适合数据流上的在线相似性搜索算法.首先,在具有或不具有全局约束条件下,分别提出了没有索引结构的DTW(dynamic time warping)下限函数LB_seg_WFglobal和LB_seg_WF,它们是一种分段DTW技术,能够处理数据流上的非等长序列间在线相似性匹配问题.然后,为了进一步提高LB_seg_WFglobal和LB_seg_WF的近似程度,提出了一系列的改进方法.最后,针对流上使用LB_seg_WFglobal或LB_seg_WF可能会出现连续失效的情况,分别提出了DTW的下限函数LB_WFglobal(具有全局约束条件)和上限函数UB_WF、下限函数LB_WF(不具有全局约束条件).通过增量方式快速估计DTW,极大地减少了估计DTW的冗余计算量.通过理论分析和统计实验,验证了该方法的有效性. 相似文献
14.
在时间序列相似性度量研究中,动态时间弯曲(dynamic time warping,DTW)是最为常用的算法之一,但其存在病态对齐问题且未考虑时间属性影响。限制对齐路径长度DTW(DTW under limited warping path length,LDTW)和时间加权DTW(time-weighed DTW,TDTW)分别尝试解决上述两个问题中的一个,但未能同时解决DTW两方面的不足。为此提出一种综合时间权重的LDTW(time-weighting LDTW,TLDTW)算法。首先通过测量两个时间序列中时间点对的距离构建时间权值矩阵;然后在LDTW累计成本矩阵递归填充过程中融合对应的时间权值,以实现在考虑时间因素影响的同时保留有效抑制病态对齐特性。基于UCR数据集进行1-NN分类实验,实验结果显示基于TLDTW相似度量的分类准确率优于其他对比算法,且进一步对比验证了其可靠性。 相似文献
15.
基于分段时间弯曲距离的时间序列挖掘 总被引:22,自引:1,他引:22
在时间序列库中的数据挖掘是个重要的课题,为了在挖掘的过程中比较序列的相似性,大量的研究都采用了欧氏距离度量或者其变形,但是欧氏距离及其变形对序列在时间轴上的偏移非常敏感.因此,采用了更鲁棒的动态时间弯曲距离,允许序列在时间轴上的弯曲,并且提出了一种新的序列分段方法,在此基础上定义了特征点分段时间弯曲距离.与经典时间弯曲距离相比,大大提高了效率,而且保证了近似的准确性. 相似文献
16.