首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Full-thickness articular cartilage defects are a major clinical problem; however, presently there is no treatment available to regeneratively repair these lesions. The current therapeutic approach is to drill the base of the defect to expose the subchondral bone with its cells and growth factors. This usually results in a repair tissue of fibrocartilage that functions poorly in the loaded joint environment. The use of phenotypically appropriate chondrocytes embedded in a collagen gel delivery vehicle may provide a method that could be used to repair full-thickness articular cartilage defects with functionally satisfactory hyaline cartilage. Allograft articular chondrocytes embedded in a type I collagen gel were transplanted into large (6 x 3 x 3 mm), full-thickness articular cartilage defects in condylar and patellar weight-bearing surfaces to develop clinically applicable methods to repair articular cartilage defects. Chondrocytes were isolated from the articular cartilage of 4-week-old New Zealand rabbits and embedded in type I collagen gels. This composite was transplanted into a full-thickness defect on the medial femoral condyle and patellar groove of adolescent host rabbits. The repair cartilage was assessed histologically by a semiquantitative scoring system and biomechanically with a microindentation technique of specimens 4-48 weeks after chondrocyte transplantation. Defects in both locations were repaired with histologically apparent hyaline cartilage observed from as early as 4 weeks until 48 weeks after transplantation. The repair cartilage in the medial femoral condyle was more irregular than in the patellar groove, but in all other respects was similar. The grafted tissue did not remodel and differentiate into the morphological zones seen in normal articular cartilage. No tidemark or subchondral bony plate formed even 48 weeks after transplantation. Biomechanically, the repaired cartilage demonstrated indentation values similar to normal articular cartilage 12 weeks after transplantation and remained the same 48 weeks after transplantation. By contrast, the control (i.e., empty) defects healed with tissue that exhibited very poor metachromatic staining and exhibited very high indentation values. Incomplete bonding of the repair tissue to the normal cartilage was seen, and the surface was significantly irregular with major discontinuities. These observations provide the basis for considering the use of allograft articular chondrocytes to repair articular cartilage defects in the weight-bearing regions of the knee.  相似文献   

2.
Iliac and sacral articular cartilage of 25 human sacroiliac joints (1-93 years) are examined by light microscopy and immunohistochemistry in order to gain further insight into the nature and progress of degenerative changes appearing during aging. These changes can already be seen in younger adults as compared to cartilage degeneration known in other diarthrodial joints. Structural differences between sacral and iliac cartilage can already be observed in the infant: the sacral auricular facet is covered with a hyaline articular cartilage, reaching 4 mm in thickness in the adult and staining intensely blue with alcian blue at pH1. Iliac cartilage of the newborn is composed of a dense fibrillar network of thick collagen bundles, crossing each other at approximately right angles. A faint staining with alcian blue suggests a low content of acidic glycosaminoglycans. In the adult, iliac cartilage becomes hyaline and its maximal thickness reaches 1-2 mm. Both articular facets exhibit morphological changes during aging that are more pronounced in the iliac cartilage and resemble osteoarthritic degeneration; the staining pattern of the extracellular matrix becomes inhomogenous, chondrocytes are arranged in clusters and the articular surface develops superficial irregularities and fissures. Sometimes fibrous tissue fills up these defects. Nevertheless, large areas of iliac cartilage remain hyaline in nature. Sacral articular cartilage often remains largely unaltered until old age. The sacral subchondral bone plate is usually thin and shows spongiosa trabeculae inserted at right angles, suggesting a perpendicular load on the articular facet. Iliac subchondral spongiosa shows no definite alignment and joins the thickened subchondral bone plate in an oblique direction. The iliac cartilage therefore seems to be stressed predominantly by shearing forces, arising from the changing monopodal support of the pelvis during locomotion. The subchondral bone plate on both the iliac and sacral auricular facet is penetrated by blood vessels that come into close contact with the overlying articular cartilage. These vessels may contribute to the high incidence of rheumatoid and inflammatory diseases in the human sacroiliac joint. Immunolabelling with an antibody against type II collagen reveals a diminished immunoreactivity in the upper half of adult sacral cartilage and only a faint and irregular labelling in the iliac cartilage. Type I collagen can be detected in a superficial layer on the sacral articular surface and around chondrocyte clusters in iliac cartilage, as in dedifferentiating chondrocytes during the development of osteoarthritis.  相似文献   

3.
Cartilage fibrils contain collagen II as the major constituent, but the presence of additional components, minor collagens, and noncollagenous glycoproteins is thought to be crucial for modulating several fibril properties. We have examined the distribution of two fibril constituents-decorin and collagen IX-in samples of fibril fragments obtained after bovine cartilage homogenization. Decorin was preferentially associated with a population of thicker fibril fragments from adult articular cartilage, but was not present on the thinnest fibrils. The binding was specific for the gap regions of the fibrils, and depended on the decorin core protein. Collagen IX, by contrast, predominated in the population with the thinnest fibrils, and was scarce on wider fibrils. Double-labeling experiments demonstrated the coexistence of decorin and collagen IX in some fibrils of intermediate diameter, although most fibril fragments from adult cartilage were strongly positive for one component and lacked the other. Fibril fragments from fetal epiphyseal cartilage showed a different pattern, with decorin and collagen IX frequently colocalized on fragments of intermediate and large diameters. Hence, the presence of collagen IX was not exclusive for fibrils of small diameter. These results establish that articular cartilage fibrils are biochemically heterogeneous. Different populations of fibrils share collagen II, but have distinct compositions with respect to macromolecules defining their surface properties.  相似文献   

4.
Articular cartilage has a limited capacity for repair. We investigated the effect of rhBMP-2 (recombinant human bone morphogenetic protein-2) on the healing of full-thickness osteochondral defects in adult New Zealand White rabbits. A single defect, three millimeters wide by three millimeters deep, was created in the trochlear groove of the right femur in eighty-nine rabbits. The defect was either left empty, filled with a plain collagen sponge, or filled with a collagen sponge impregnated with five micrograms of rhBMP-2. The animals were killed at four, eight, or twenty-four weeks, and the repair tissue was examined histologically and evaluated with use of a grading scale. The defects also were examined immunohistochemically for the presence of type-II collagen at four and eight weeks. The rate of bone repair was evaluated with fluorescent labeling of bone at two and four weeks and with use of fluorescence microscopy at eight weeks. Treatment with rhBMP-2 greatly accelerated the formation of new subchondral bone and improved the histological appearance of the overlying articular surface. At twenty-four weeks, the thickness of the repair cartilage was 70 per cent that of the normal adjacent cartilage and a new tidemark usually had formed between the repair cartilage and the underlying subchondral bone. The average total scores on the histological grading scale were significantly better (p < 0.01) for the defects treated with rhBMP-2 than for the untreated defects (those left empty or filled with a plain collagen sponge) at all time-points. Immunostaining with an antibody against type-II collagen showed the diffuse presence of this cartilage-specific collagen throughout the repair cartilage in the treated defects. The untreated defects demonstrated minimum staining with this antibody.  相似文献   

5.
OBJECTIVE: To investigate changes in the composition of articular cartilage matrix during the development of experimental osteoarthritis (OA), collagen type II, collagen type I, and the noncollagenous proteins fibronectin and tenascin were studied in normal and osteoarthritic cartilage of rabbits. METHODS: OA of the knee joint was induced by a medial meniscectomy and section of the medial collateral ligament and anterior cruciate ligament. Frozen sections of rabbit normal and OA cartilage were stained with monoclonal antibodies against collagen type II, collagen type I, fibronectin, and tenascin. RESULTS: Collagen II manifested a decreased interterritorial staining and seemed to increase territorially in the deeper zones of the OA cartilage. Collagen I was found in normal cartilage as a thin layer covering the surface and also in OA fibrillated cartilage. Fibronectin was present in normal and OA cartilage. Whereas a layer covered the normal cartilage, a thicker layer was observed in OA cartilage. In addition, changes in fibronectin distribution from the pericellular to the interterritorial matrix were observed. Tenascin was also found in normal cartilage matrix, particularly in the territorial and interterritorial matrix of the deeper zones. It showed an increased staining intensity in fibrillated cartilage, in the pericellular matrix of the upper chondrocytes, and on the surface lining in OA cartilage. CONCLUSION: Collagen type II deposition seems to increase in the deeper cartilage zones during the osteoarthritic process, as a sign of tissue repair response. Collagen type I, fibronectin, and tenascin show enhanced deposition in the upper, fibrillated osteoarthritic cartilage, suggesting a common mediator controlled pathway.  相似文献   

6.
OBJECTIVES: To investigate articular cartilage collagen network, thickness of birefringent cartilage zones, and glycosaminoglycan concentration in macroscopically normal looking knee joint cartilage of young beagles subjected to experimental slowly progressive osteoarthritis (OA). METHODS: OA was induced by a tibial 30 degree valgus osteotomy in 15 female beagles at the age of 3 months. Fifteen sisters were controls. Cartilage specimens were collected seven (Group 1) and 18 months (Group 2) postoperatively. Collagen induced optical path difference and cartilage zone thickness measurements were determined from histological sections of articular cartilage with smooth and intact surface by computer assisted quantitative polarised light microscopy. Volume density of cartilage collagen fibrils was determined by image analysis from transmission electron micrographs and content of glycosaminoglycans by quantitative digital densitometry from histological sections. RESULTS: In the superficial zone of the lateral tibial and femoral cartilage, the collagen induced optical path difference (birefringence) decreased by 19 to 71% (p < 0.05) seven months postoperatively. This suggests that severe superficial collagen fibril network deterioration took place, as 18 months postoperatively, macroscopic and microscopic OA was present in many cartilage areas. Thickness of the uncalcified cartilage increased while the superficial zone became thinner in the same sites. In operated dogs, glycosaminoglycan content first increased (Group 1) in the lateral tibial condyle and then decreased (Group 2) (p < 0.05). CONCLUSION: In this OA model, derangement of the superficial zone collagen network was the probable reason for birefringence reduction. This change occurred well before macroscopic OA.  相似文献   

7.
OBJECTIVE: To determine the effects of continuous passive motion (CPM) and immobilization on synovitis and cartilage degradation in an experimental model of chronic inflammatory, antigen-induced arthritis. METHODS: After bilateral arthritis induction of knee joints in 22 NZW rabbits, one knee was immobilized with a flexion splint while the opposite knee received CPM. RESULTS: After 2 weeks (n = 10), the CPM treated knees had significantly greater joint swelling, synovial effusion, and histologic synovitis scores compared to its opposite immobilized knees. However, the total cartilage degradation score showed no statistically significant difference between the two treatments. When the treatments were discontinued after 2 weeks and animals were allowed intermittent active motion of both knees in cages for 4 weeks (n = 12), no statistically significant difference in joint swelling, synovial effusion, and histologic synovitis score was observed between the 2 treatments. The articular cartilage degradation, however, was significantly greater in the immobilized knees compared to its opposite CPM treated knees. Five of 12 immobilized knees had articular surface erosion compared to none in the CPM treated knees. Loss of cellularity was also significantly greater in the immobilized knees. CONCLUSION: Although CPM produced greater synovitis at 2 weeks, articular cartilage was better preserved in the knees treated with CPM than immobilization at 6 weeks.  相似文献   

8.
The effect of long distance running exercise (40 km/day for 15 weeks, five days a week) on the decorin content of articular cartilage from the knee joint was studied in female beagle dogs. Samples from load bearing sites on the lateral plateau of the tibia (TL), and pooled material from two minimum load bearing sites on the posterior section of lateral (FLP) and medial (FMP) femoral condyles were analyzed. The running exercise protocol did not lead to significant changes in the overall glycosaminoglycan content of the cartilage. However, the amount of decorin significantly increased in the TL samples, and also in the FMP pool. These results support earlier in vitro observations that decorin synthesis is stimulated by loading, independent of the synthesis of aggrecan.  相似文献   

9.
A clinical and experimental study was carried out on knee joints of rabbits and in humans. In one knee joint of each rabbit 0.3 ml 1% osmic acid or 0.3 ml 5% Varicocid was injected, the remaining uninjected joints serving as controls. The animals were killed after 1 and 24 hours, 15, 45 and 90 days. Study with the electron microscope after osmic acid injection revealed necrosis of the chondrocytes in the superficial layer and upper middle zone. The articulations injected with Varicocid exhibited only slight lesions of the chondrocytes in the upper layer, consisting of dilated rough endoplasmatic reticulum, mitochondria lacking matrix and christae; the electron density of the layer seemed to be diminished. Biopsy of the non-weight-bearing cartilage of the lateral femoral condyle was performed in 4 patients with Rheumatoid Arthritis and arthritis of the knee in the onset stage. Two of these patients received one intra-articular injection of 10 ml 1% osmic acid, 5 ml 2% xylocaine and 50 mg hydrocortisone and the other 2 patients 6 ml 5% Varicocid. Biopsy of the cartilage in the areas adjacent to the site of the first biopsies 1 and 3 1/2 months after treatment with osmic acid and 2 and 3 1/2 months after treatment with Varicocid showed in the first two cases necrosis of the chondrocytes in the superficial layer and upper middle zone of the articular cartilage and depletion of the mucopolysaccharides in the ground substance, revealed by PAS and alcian blue staining. No lesion of the knee joint cartilage was observed in the other two cases. In view of the results obtained, chemical synovectomy with Varicocid can be considered as having received further support.  相似文献   

10.
High-molecular hyaluronic acid was injected repeatedly into normal knee joints of adult rabbits. Histologically the articular cartilage was not affected by this treatment. The content of chondroitin sulphate, assessed by a histochemical method, was not altered and neither was the water content of the hyaline articular cartilage. On the other hand, in the synovial membrane of joints treated with hyaluronic acid a diffuse infiltration of plasma cells and lymphocytes was observed, indicating that the hyaluronic acid administered exerts its action via the synovial membrane.  相似文献   

11.
In a rabbit model the healing process of the anterior attachment of the medical meniscus was observed during the first 12 weeks after sharp transection and refixation in a tibial bone channel. Evaluations of the healing tissue were histologic analysis, application of immunohistochemical methods to show collagen types and nerve regeneration, and mechanical load to failure tests. Secondary changes to knee joint cartilage, as signs of eventual dysfunction of the refixed meniscus, were evaluated by analysis of proteoglycan fragment concentration in joint fluid and histologic analysis of knee joint articular cartilage and synovium. The healing tissue between the refixed attachment and bone matured from highly cellular, nonspecific granulation tissue at 1 week, to bone, fibrocartilaginous, and fibrous tissues, which at some sites developed an insertion specific tissue arrangement within a 12-week period. However, the irregular interface between the fibrocartilaginous tissue and the underlying bone, which is typical for a normal insertion, was not reestablished. Labeling for collagen Types I and II in the newly formed insertion did not return to normal. In addition a few collagen fibers connected the refixed attachment tissue to bone. New bone formation turned the initially cancellous bone tunnel walls into more solid cortical bone. However, new bone formation did not fill the distal part of the channel. The refixed meniscal attachment underwent necrosis and was revitalized by cell ingrowth from the periphery. Nerve fibers were found in the newly formed insertion by 12 weeks. The failure load at tensile testing never reached more than 20% that of a normal attachment. Degeneration of articular cartilage and increased proteoglycan fragment in the joint fluid were common after this procedure. These data suggest that, despite the focal appearance of insertion specific tissues and healing of collagen fibers to bone, the tissue architecture of a normal meniscal insertion and a normal meniscal joint protective function were not reestablished.  相似文献   

12.
Adult articular chondrocytes are each surrounded by a heterogeneous microenvironment and together form the chondron. Since little is known of chondron development, agarose gel culture, confocal immunohistochemistry and image analysis have been used to characterize the molecular anatomy and temporal development of the chondrocyte pericellular microenvironment in vitro. Two structurally distinct domains were identified during the 12-week culture period. The first comprised a narrow glycocalyx, 1-3 microns in width, which consolidated over time and was rich in collagen types II, VI, IX and XI, fibronectin, decorin and the aggrecan epitopes, 5D4 and HABR. The second region emerged after 4-6 weeks in culture and progressively developed a broad territorial region up to 12 microns wide around the chondrocyte and pericellular glycocalyx. Co-localization studies confirmed the dominance of aggrecan epitopes 2B6, EFG-4, 5D4 and HABR in the territorial domain, whereas surface density mapping with NIH image revealed two patterns of staining, one punctate and stippled, the other more uniform in distribution. The pericellular differentiation identified appeared analogous to the chondrons of adult articular cartilage, and provides an appropriate in vitro model for further studies of cell surface receptor function in the orchestration of pericellular matrix assembly.  相似文献   

13.
The purposes of this study were to determine the in situ functional and material properties of articular cartilage in an experimental model of joint injury, and to quantify the corresponding in situ joint contact mechanics. Experiments were performed in the anterior cruciate ligament (ACL) transected knee of the cat and the corresponding, intact contralateral knee, 16 weeks following intervention. Cartilage thickness, stiffness, effective Young's modulus, and permeability were measured and derived from six locations of the knee. The total contact area and peak pressures in the patellofemoral joint were obtained in situ using Fuji Pressensor film, and comparisons between experimental and contralateral joint were made for corresponding loading conditions. Total joint contact area and peak pressure were increased and decreased significantly (alpha=0.01), respectively, in the experimental compared to the contralateral joint. Articular cartilage thickness and stiffness were increased and decreased significantly (alpha=0.01), respectively, in the experimental compared to the contralateral joint in the four femoral and patellar test locations. Articular cartilage material properties (effective Young's modulus and permeability) were the same in the ACL-transected and intact joints. These results demonstrate for the first time the effect of changes in articular cartilage properties on the load transmission across a joint. They further demonstrate a substantial change in the joint contact mechanics within 16 weeks of ACL transection. The results were corroborated by theoretical analysis of the contact mechanics in the intact and ACL-transected knee using biphasic contact analysis and direct input of cartilage properties and joint surface geometry from the experimental animals. We conclude that the joint contact mechanics in the ACL-transected cat change within 16 weeks of experimental intervention.  相似文献   

14.
OBJECTIVE: To determine if arthroscopic synovectomy in normal and inflamed joints had temporal or site-related effects on articular cartilage. STUDY DESIGN: Alterations in equine third carpal bone articular cartilage were studied at two time periods: groups 1 and 2 (6 weeks) and groups 3 and 4 (2 weeks) after synovectomy in normal (groups 2 and 4) and inflamed carpi (groups 1 and 3). ANIMAL POPULATION: 16 carpi from eight horses. METHODS: Biochemical and biomechanical properties of dorsal and palmar articular cartilage were determined by radioloabeling, proteoglycan (PG) extraction, chromatography, electrophoresis, and indentation testing. RESULTS: Synovectomy in inflamed joints produced the greatest concentration of newly synthesized PG in articular cartilage by 2 weeks. Synovectomy in normal joints produced significantly greater newly synthesized PG in articular cartilage by 6 weeks. Dorsal sites had greater newly synthesized and endogenous PG in some groups. Chromatographic profiles of newly synthesized PG demonstrated early and late PG peaks. Electrophoresis of late PG peak showed a toluidine blue-positive band that comigrated with human A1D1 PG monomer in the two groups with the most newly synthesized PG> This band was reactive with monoclonal antibody 1C6 specific for the hyaluronic acid-binding region of aggrecan. For the material properties evaluated, only Poisson's ratio was significantly decreased between groups as a function of time (6 weeks < 2 weeks). and this was most pronounced in the thicker dorsal sites. CONCLUSIONS: Synovectomy in inflamed joints produced site-specific, significantly greater responses in articular cartilage as compared with synovectomy in normal joints. CLINICAL RELEVANCE: Synovectomy may not be beneficial to the articular cartilage in inflamed joints.  相似文献   

15.
In this study we have investigated whether proteoglycans (aggrecan) are modified by nonenzymatic glycation as in collagen. Purified human aggrecan from osteoarthritic and normal human knee articular cartilage was assayed for pentosidine, a cross-link formed by nonenzymatic glycation, using reverse-phase HPLC. In addition, an in vitro study was done by incubation of purified bovine nasal cartilage aggrecan with ribose. Pentosidine was found in all the purified human aggrecan samples. 2-3% of the total articular cartilage pentosidine was found in aggrecan. Purified link protein also contained penosidine. The in vitro study led to pentosidine formation, but did not appear to increase the molecular size of the aggrecan suggesting that pentosidine was creating intramolecular cross-links. Similar amounts of glycation were found in osteoarthritic and normal cartilage. Like collagen, aggrecan and link proteins are crosslinked by nonenzymatic glycation in normal and osteoarthritic cartilage. Crosslinking could be reproduced, in vitro, by incubating aggrecan with ribose.  相似文献   

16.
The objective of this study was to examine the effect of a bipolar ablation probe on experimentally roughened articular cartilage and compare it with the traditional mechanical shaving technique using the knee joint of sheep. Twenty-eight skeletally mature ewes were divided randomly into two groups: one group was treated with a rotating shaving device and another group was treated using the bipolar ablation probe (Bipolar Arthroscopic Probe; Electroscope, Inc, Boulder, CO). Animals were killed at 0, 6, 12, and 24 weeks, and histological sections of the experimental limbs were compared with sections of the opposite limb using a modified Mankin scale. The following variables were used to determine scores: surface (0-6), cells (0-4), hypocellularity (0-3), matrix staining (transitional zone [0-4], radiate zone [0-4], and focal empty lacunae or hypereosinophilic cells (0-3). Differences in scores for all response variables were calculated as treated limb minus sham limb. Response variables were formed: score >0 recoded as 1 (favorable response treated better than sham), score of 0 recoded as 2 (neutral response no differences), and score <0 recoded as 3 (unfavorable response treated worse than sham). Bipolar ablative probe-treated limbs had 14.29% favorable responses and 35.71% favorable or neutral responses, whereas shave-treated limbs had 0% favorable and only 7.14% favorable or neutral responses. For all variables, bipolar ablative probe-treated limbs had more favorable responses. The less severe histological change in the bipolar ablative probe-treated joints compared with the shave-treated joints suggests that bipolar ablation of articular cartilage may be a better treatment for chondromalacia than the usual shaving methods of debridement. Further, there were no pathological changes in the subchondral bone.  相似文献   

17.
OBJECTIVE: To study the effect of bone morphogenetic protein 2 (BMP-2) on articular cartilage proteoglycan (PG) synthesis in vivo and to investigate whether BMP-2 is able to counteract the effects of interleukin-1 (IL-1) on articular cartilage PG synthesis and content. METHODS: BMP-2 alone or in combination with IL-1alpha was injected into murine knee joints. PG synthesis was measured by 35S-sulfate incorporation using an ex vivo method or autoradiography. Cartilage PG content was analyzed by measuring Safranin O staining intensity on histologic sections. RESULTS: BMP-2 appeared to be a potent stimulator of articular cartilage PG synthesis in vivo. However, BMP-2 was not able to counteract the deleterious effects of IL-1alpha on articular cartilage PG synthesis and content. In addition, intraarticular injections of BMP-2 induced chondrophytes. CONCLUSION: Although BMP-2 is a very potent stimulator of cartilage PG synthesis in vivo, the therapeutic applications of BMP-2 are limited due to the inability of BMP-2 to counteract the effects of IL-1 and the induction of chondrophytes.  相似文献   

18.
The submicroscopic orientation patterns of sulfated glycosaminoglycan side chains of proteoglycan molecules and collagen fibrils were compared in different extracellular matrix areas of femoral and tibial articular cartilages of young adult beagle dogs using qualitative and quantitative polarization microscopic analytical methods. Paraffin sections were cut perpendicularly to the articular surfaces from the femoral and tibial condyles and stained. Picrosirius red F38 staining combined with an antecedent digestion with testicular hyaluronidase was used to enhance the optical anisotropy of collagen. Birefringence of sulfated glycosaminoglycan molecules was selectively amplified by a combination of carboxymethylation with CH3I and a subsequent staining with toluidine blue. The specimens were analysed in a polarization microscope equipped with compensator plates, and retardation values of birefringence were determined in territorial and interterritorial matrix areas of different zones using monochromatic plane polarized light. It was found that besides some similarities there were significant differences in the submicroscopic organization of extracellular matrix between femoral and tibial articular cartilages. Common structural features of the femoral and tibial cartilages were the sulfated glycosaminoglycans and collagen fibrils which were circularly oriented in the territorial matrix, and these components were longitudinally arranged within the trabeculae of the interterritorial matrix. Furthermore, the territorial matrix was a more densely packed structure than the interterritorial matrix. Our results revealed the following major differences between the two cartilages: The degree of orientation of sulfated glycosaminoglycans was higher in the femoral cartilage matrix areas as compared to the identical structures of the tibial cartilage; the collagen structure was more densely packed in the interterritorial matrix of the superficial and mineralization zones of the femoral cartilage than in the tibial cartilage, and except for the zone of mineralization, the degree of collagen orientation was higher in the territorial matrix of the femoral than the tibial cartilage. These findings suggest that the extracellular matrix of femoral condylar cartilage has a more densely packed molecular structure than the softer tibial cartilage matrix. This structural difference may have an influence on the pathogenesis of diseases involving articular cartilage.  相似文献   

19.
OBJECTIVE: To study the influence of joint loading and immobilization on articular cartilage hyaluronan concentration and histological distribution in the knee joints of young dogs subjected to 11 weeks' immobilization by splinting, and 15 weeks' running exercise at a rate of 40 km/day. METHODS: The amount of hyaluronan in articular cartilage was determined by a competitive binding assay using a biotinylated hyaluronan binding complex (HABC) of aggrecan and link protein. Histologic sections were stained for the localization of hyaluronan with the HABC probe. Extracted proteoglycans were characterized by sodium dodecyl sulfate agarose gel electrophoresis. RESULTS: Immobilization significantly reduced the concentration of hyaluronan in all sites studied (tibial and femoral condyles, patellar surface of femur). The proportion of hyaluronan to total uronic acid (mainly from aggrecan) remained unchanged because of a concurrent decrease in aggrecan. The ratio of hyaluronan and aggrecan remained constant also in runners. The staining pattern of free hyaluronan in the tissue sections and the electrophoretic mobility of the extracted proteoglycans were not affected by the different loading regimes. CONCLUSION: Reduced joint loading due to splint immobilization significantly decreases both hyaluronan and aggrecan in the articular cartilage. The remarkably parallel changes in aggrecan and hyaluronan content suggest that joint loading exerts a coordinated influence on their metabolism.  相似文献   

20.
In this study we investigated the hypothesis that cartilage from defined regions of ovine stifle joints, which were subjected to differing mechanical stresses, contained phenotypically distinct chondrocyte populations. Chondrocyte phenotypes were identified by the relative biosynthesis of the proteoglycans (PGs) aggrecan, biglycan and decorin. Articular cartilage (AC) from adult and neonatal ovine stifle joints were examined. Cells were cultured as both full-depth AC explants and in alginate beads after their isolation from the AC matrix. When chondrocytes from the various topographical regions of adult ovine knee joints were cultured as explants they demonstrated a consistent difference with regard to the metabolism of aggrecan and decorin. Significantly, this topographically-dependent phenotypic expression of PGs was preserved when the chondrocytes were cultured in alginate beads. In adult joints, chondrocytes from the central region of the tibial plateau not covered by the meniscus, which is subjected to high mechanical loads in-vivo, synthesized less aggrecan but more decorin than cells from regions covered by the meniscus. When chondrocytes from identical AC regions of neonatal ovine joints were cultured as explants, no topographical difference in aggrecan nor decorin metabolism could be detected. The results of this study, in association with the existing literature, lead us to propose that post-natal mechanical loading of AC could select for chondrocyte clones or induce a lasting modulation of chondrocyte phenotypic expression in different joint regions. Such cellular changes could result in the synthesis of PG populations that confer properties to AC most suited to resist the variable mechanical stresses in the different joint regions. This study serves to emphasize the importance of using cartilage from identical joint areas when examining PG metabolism by chondrocytes. Further investigation into the relationship between mechanical loading, regional chondrocyte phenotype selection and the response of these cells to anabolic and catabolic factors may provide important insights into the focal nature of AC degeneration in osteoarthritis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号