首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The control growth of the cubic meta‐stable nitride phase is a challenge because of the crystalline nature of the nitrides to grow in the hexagonal phase, and accurately identifying the phases and crystal orientations in local areas of the nitride semiconductor films is important for device applications. In this study, we obtained phase and orientation maps of a metastable cubic GaN thin film using precession electron diffraction (PED) under scanning mode with a point‐to‐point 1 nm probe size beam. The phase maps revealed a cubic GaN thin film with hexagonal GaN inclusions of columnar shape. The orientation maps showed that the inclusions have nucleation sites at the cubic GaN {111} facets. Different growth orientations of the inclusions were observed due to the possibility of the hexagonal {0001} plane to grow on any different {111} cubic facet. However, the generation of the hexagonal GaN inclusions is not always due to a 60° rotation of a {111} plane. These findings show the advantage of using PED along with phase and orientation mapping, and the analysis can be extended to differently composed semiconductor thin films. Microsc. Res. Tech. 77:980–985, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

2.
LaNiO3 thin films were successfully prepared by a chemical method from citrate precursors. The LNO precursor solution was spin‐coated onto Si (100) and Si (111) substrates. To obtain epitaxial or highly oriented films, the deposited layers were slowly heated in a gradient thermal field, with a heating rate of 1° min?1, and annealed at 700°C. The influence of different substrate orientations on the thin film morphology was investigated using atomic force microscopy and X‐ray diffraction analysis. Well‐crystallized films with grains aligned along a certain direction were obtained on both substrates. Films deposited on both substrates were very smooth, but with a different grain size and shape depending on the crystal orientation. Films deposited on Si (100) grew in the (110) direction and had elongated grains, whereas those on Si (111) grew in the (211) direction and had a quasi‐square grain shape.  相似文献   

3.
Highly oriented ZnO and Mg doped ZnO thin films were fabricated on Al2O3 substrate by sputtering at room temperature. The effect of Mg doping on the structural, optical, and morphological properties of ZnO film was investigated. The intensity of (002) peak in X‐ray diffraction measurements revealed the influence of Mg doping on the crystallinity and orientation of ZnO film. Photoluminescence (PL) results show that the Ultraviolet (UV) emission peak was shifted to lower wavelength side for Mg:ZnO film indicating the possibility for quantum confinement. UV–vis–NIR optical absorption revealed an improvement in optical transmittance from 70 to 85%, and corresponding optical band gap from 3.25 to 3.54 eV. Atomic force microscope (AFM) images revealed the nano‐size particulate microstructure of the films. The surface topography of Mg doped ZnO film confirmed decreased grain size with large surface roughness and increased surface area, favorable for sensing. Pure ZnO and Mg doped ZnO film were used as active layer and tested for its sensing performance to hydrogen. Compared to undoped ZnO, 22 at.% Mg doped ZnO film showed much higher sensor response to H2 at a concentration as low as 200 ppm and at a lower operating temperature of 180°C. A linear sensor response was observed for H2 concentration in the range of 100–500 ppm. Microsc. Res. Tech. 76:1118–1124, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

4.
Gallium nitride (GaN) films were grown on sapphire and zinc oxide (ZnO) single crystal substrates using plasma‐assisted molecular beam epitaxy. As ZnO for GaN have a better lattice match, the coverage ratio of the GaN (002) plane on the ZnO substrate was significantly higher by about 45%. According to conducting atomic force microscopy and scanning surface potential microscopy measurements, the surface of GaN films grown on the ZnO substrate had two excellent physical characteristics: (a) an 18% reduction of the high contact current region, and (b) a highly uniform work function distribution. Therefore, for future applications in GaN‐based light‐emitting diodes, the use of ZnO as a substrate will prolong the luminescence lifetime and enhance the luminescent monochromaticity.  相似文献   

5.
In this study, we investigated the relative contributions of atomic number (Z) and density (ρ) to the degradation of the electron backscatter diffraction (EBSD) pattern quality for nanoparticles < 500 nm in diameter. This was accomplished by minimizing the diffuse scattering from the conventional thick mounting substrate through the design of a sample holder that can accommodate particles mounted on thin‐film TEM substrates. With this design, the contributions of incoherently scattered electrons that result in the diffuse background are minimized. Qualitative and quantitative comparisons were made of the EBSD pattern quality obtained from Al2O3 particles approximately 200 nm in diameter mounted on both thick‐ and thin‐film C substrates. For the quantitative comparison we developed a ‘quality’ factor for EBSD patterns that is based on the ratio of two Hough transforms derived from a given EBSD pattern image. The calculated quality factor is directly proportional to the signal‐to‐noise ratio for the EBSD pattern. In addition to the comparison of the thick and thin mounting substrates, we also estimated the effects of Z and ρ by comparing the EBSD pattern quality from the Al2O3 particles mounted on thin‐film substrates with the quality of patterns obtained from Fe–Co nanoparticles approximately 120 nm in diameter. The results indicate that the increased background generated in EBSD patterns by the electrons escaping through the bottom of the small particles is the dominant reason for the poor EBSD pattern quality from nanoparticles < 500 nm in size. This was supported by the fact that we were able to obtain usable EBSD patterns from Al2O3 particles as small as 130 nm using the thin‐film mounting method.  相似文献   

6.
ZnO films were deposited onto glass, ITO coated glass, and sapphire substrate by spray pyrolysis, and subsequently annealed at the same temperature of 400°C for 3 h. The role of substrate on the properties of ZnO films was investigated. The structural and optical properties of the films were investigated by X‐ray diffractometer (XRD) and photoluminescence (PL) spectrophotometer, respectively. The surface morphology of the nanostructured ZnO film was investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). Crystallographic properties revealed that the ZnO films deposited on sapphire and ITO substrates exhibit a strong c‐axis orientation of grains with hexagonal wurtzite structure. Extremely high UV emission intensity was determined in the film on ITO. The different luminescence behaviors was discussed, which would be caused by least value of strain in the film. Films grown on different substrates revealed differences in the morphology. ZnO films on ITO and sapphire substrates revealed better morphology than that of the film on glass. AFM images of the films prepared on ITO show uniform distribution of grains with large surface roughness, suitable for application in dye sensitized solar cells. Microsc. Res. Tech. 77:211–215, 2014. © 2013 Wiley Periodicals, Inc.  相似文献   

7.
The unique phase‐sensitive acoustic microscope is used for the structural and mechanical characterization of thin films of polystyrene/polymethylmethacrylate blends. The effect of annealing on blends of polystyrene/polymethylmethacrylate spin coated from different solvents unto a substrate is studied. Varying the solvents according to vapour pressure and spin coating at different speeds (for thickness variation) led to changes in phase domain distributions and overall structural properties before annealing. Annealing in vacuum at 190°C for 48 h resulted in the elimination of solvent effects with all samples reverting to a similar morphology irrespective of common solvent and thickness. The Young's moduli at specific points on the film (Epolystyrene= 3.4 ± 0.3 GPa, Epolymethylmethacrylate= 4.2 ± 0.4 GPa) and over a given area (Epolystyrene/polymethylmethacrylate= 3.9 ± 0.4 GPa) were determined by combinatory use of the atomic force microscope and phase‐sensitive acoustic microscope. These results demonstrate a minimally invasive method for the quantitative characterization of polymer blend films.  相似文献   

8.
This work describes an analysis of titanium dioxide (TiO2) thin films prepared on silicon substrates by direct current (DC) planar magnetron sputtering system in O2/Ar atmosphere in correlation with three‐dimensional (3D) surface characterization using atomic force microscopy (AFM). The samples were grown at temperatures 200, 300, and 400°C on silicon substrate using the same deposition time (30 min) and were distributed into four groups: Group I (as‐deposited samples), Group II (samples annealed at 200°C), Group III (samples annealed at 300°C), and Group IV (samples annealed at 400°C). AFM images with a size of 0.95 μm × 0.95 μm were recorded with a scanning resolution of 256 × 256 pixels. Stereometric analysis was carried out on the basis of AFM data, and the surface topography was described according to ISO 25178‐2:2012 and American Society of Mechanical Engineers (ASME) B46.1‐2009 standards. The maximum and minimum root mean square roughnesses were observed in surfaces of Group II (Sq = 7.96 ± 0.1 nm) and Group IV (Sq = 3.87 ± 0.1 nm), respectively.  相似文献   

9.
In this study, the synthesis of thin films of Mg phosphorus doped tungsten bronzes (MgPTB; MgHPW12O40·29H2O) by the self‐assembly of nano‐structured particles of MgPTB obtained using the ultrasonic spray pyrolysis method was investigated. As the precursor, MgPTB, prepared by the ionic exchange method, was used. Nano‐structured particles of MgPTB were obtained using the ultrasonic spray pyrolysis method. The nano‐structure of the particles used as the building blocks in the MgPTB thin film were investigated experimentally and theoretically, applying the model given in this article. The obtained data for the mean particle size and their size distribution show a high degree of agreement. These previously tailored particles used for the preparation of thin films during the next synthesis step, by their self‐assembly over slow deposition on a silica glass substrate, show how it is possible to create thin MgPTB films under advance projected conditions of the applied physical fields with a fully determined nanostructure of their building block particles, with a relatively small roughness and unique physical properties.  相似文献   

10.
We have used conventional high‐resolution transmission electron microscopy and electron energy‐loss spectroscopy (EELS) in scanning transmission electron microscopy to investigate the microstructure and electronic structure of hafnia‐based thin films doped with small amounts (6.8 at.%) of Al grown on (001) Si. The as‐deposited film is amorphous with a very thin (~0.5 nm) interfacial SiOx layer. The film partially crystallizes after annealing at 700 °C and the interfacial SiO2‐like layer increases in thickness by oxygen diffusion through the Hf‐aluminate layer and oxidation of the silicon substrate. Oxygen K‐edge EELS fine‐structures are analysed for both films and interpreted in the context of the films’ microstructure. We also discuss valence electron energy‐loss spectra of these ultrathin films.  相似文献   

11.
We report on the microstructure and interfacial chemistry of thin films of pure and La‐doped multiferroic bismuth ferrite (Bi1‐xLaxFeO3 or BLFO), synthesized on Indium Tin Oxide‐coated glass substrates by solution‐deposition technique and studied using scanning transmission electron microscopy. Our results show that undoped and La‐doped thin films are polycrystalline with distorted rhombohedral structure without any presence of any line or planar defect in the films. In addition, the films with La doping did not show any structural change and maintain the equilibrium structure. Cross section compositional analysis using X‐ray energy dispersive spectrometry did not reveal either any interdiffusion of chemical species or formation of reaction product at the film‐substrate interface. However, a closer examination of the microstructure of the films shows tiny pores along with the presence of ~2–3 nm thin amorphous layers, which may have significant influence on the functional properties of such films. Microsc. Res. Tech. 76:1304–1309, 2013. © 2013 Wiley Periodicals, Inc.  相似文献   

12.
Vanadium pentoxide V2O5 thin films were grown at room temperature on ITO coated glass substrates by electrochemical deposition. The resulting films were annealed at 300, 400 and 500°C for 1 h in ambient environment. The effect of heat treatment on the films properties such as surface morphology, crystal structure, optical absorption and photoluminescence were investigated. The x‐ray diffraction study showed that the films are well crystallized with temperatures. Strong reflection from plane (400) indicated the film's preferred growth orientation. The V2O5 films are found to be highly transparent across the visible spectrum and the measured photoluminescence quenching suggested the film's potential application in OPV device fabrication.  相似文献   

13.
Conducting atomic force microscopy and scanning surface potential microscopy were adopted to investigate the nanoscale surface electrical properties of N‐doped aluminum zinc oxide (AZO:N) films that were prepared by pulsed laser deposition (PLD) at various substrate temperatures. Experimental results demonstrated that when the substrate temperature is 150°C and the N2O background pressure is 150 mTorr, the N‐dopant concentration on the surface is optimal. In addition, the root‐mean‐square roughness value of the film surface, the low contact current (<400 nA) conducting region as a percentage of the total area, and the mean work function value are 1.43 nm, 96.9%, and 4.88 eV, respectively, all of which are better than those of the optimal AZO film made by PLD. This result indicates that N‐doped AZO films are better for use as window materials in polymer light‐emitting diodes. Microsc. Res. Tech., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

14.
Semiconducting silver selenide telluride (Ag2SeTe) thin films were prepared with different thicknesses onto glass substrates at room temperature using thermal evaporation technique. The structural properties were determined as a function of thickness by X‐ray diffraction exhibiting no preferential orientation along any plane; however, the films are found to have peaks corresponding to mixed phase. The morphology of these films was studied using scanning electron microscope and atomic force microscopy respectively, and is reported. The morphological properties are found to be very sensitive to the thin film thickness. The composition of the films is also estimated using energy dispersive analysis using X‐rays and are also reported.  相似文献   

15.
Pulsed laser deposition (PLD) technique is applied in fabrication of thin films of KTiOPO4 (KTP) material, which possesses electro-optic and nonlinear optical properties. Thin film fabrication of optically functional KTP on fused silica and different sapphire substrates by changing an ambient oxygen pressure and a substrate temperature during PLD is investigated. Highly oriented KTP thin films could be grown on sapphire $ {\left( {11\overline{2} 0} \right)} $ in an oxygen atmosphere by PLD using a composite target whose stoichiometry is nearly same as KTP. Although the film contained polycrystalline crystallites, predominant crystallites seemed to be epitaxially grown.  相似文献   

16.
The GaSb‐based quaternary alloys are a good choice for thermophotovoltaic applications. The thermophotovoltaic cell converts infrared radiation to electricity, using the same principles as photovoltaic devices. The aim of the present work was the microstructural study of such an alloy, namely Ga0.84In0.16As0.12Sb0.88. A thin film of the material was grown by metal organic vapour phase epitaxy on a (100)α→[111]B (α = 2°, 4°, 6°) GaSb substrate. The GaInAsSb alloy has an appropriate band gap, but suffers from a phase separation consisting of GaAs‐rich and InSb‐rich regions that is disadvantageous for cell efficiency. In this work, we employed a morphological approach to phase separation, with the use of conventional transmission electron microscopy and atomic force microscopy. The phase separation occurs in two different orientations: parallel to the growth direction (vertical) and inclined (lateral). After application of fast Fourier transformation filtering, the vertical periodicity was found to be λ = 5 nm for the pair (black and white) of layers independently of the cut‐off angle, whereas the lateral periodicity was related to it.  相似文献   

17.
CeO2 thin films doped with neodymium oxides for application to gas sensors have been elaborated by the pulsed laser deposition technique. The films were deposited on orientated Si (100) substrates with variable deposition times (t = 90, 180 and 360 s) and molar fractions of Nd2O3 (0, 6.5, 15, 21.5 and 27 at.%). The resulting Nd–CeO2 thin films were characterized by means of X‐ray diffraction analysis, scanning electron microscopy and transmission electron microscopy equipped with EDS (Energy Dispersive Spectrometer) microanalysis. From X‐ray diffraction analyses, it is clearly established that the texture is modified by Nd additions. The preferred (111) orientations of the CeO2 crystals change into the (200) orientation. The morphology of the CeO2 grains changes from triangles, for pure CeO2 thin films, to spherical grains for Nd‐doped films. In addition, cell parameter analyses from X‐ray diffraction data show that a partial chemical substitution of Ce by Nd should occur in the face‐centred cubic lattice of ceria: this should give rise to Ce1‐xNdxO2?z phases with oxygen non‐stoichiometry.  相似文献   

18.
Automated electron backscatter diffraction (EBSD) techniques have been used to characterize the microstructures of thin films for the past decade or so. The recent change in strategy from an aluminum‐based interconnect structure in integrated circuits to one based on copper has necessitated the development of new fabrication procedures. Along with new processes, complete characterization of the microstructures is imperative for improving manufacturability of the Cu interconnect lines and in‐service reliability. Electron backscatter diffraction has been adopted as an important characterization tool in this effort. Cu microstructures vary dramatically as a function of processing conditions, including electroplating bath chemistry, sublayer material, stacking sequence of sublayers, annealing conditions, and line widths and depths. Crystallographic textures and grain size and grain boundary character distributions, all of which may influence manufacturability and reliability of interconnect lines, are ideally characterized using EBSD. The present discussion presents some results showing structural dependence upon processing parameters. In addition, the authors identify an in‐plane orientation preference in inlaid Cu lines {111} normal to the line surface and 〈110〉 aligned with the line direction. This relationship tends to strengthen as the line width decreases.  相似文献   

19.
The preparation of cross-section samples of thin films for TEM, may be difficult and tedious, especially if the difference in chemical or physical etching rates is large between the film and the substrate. In this paper, a method is presented whereby cross-sections can be prepared even if the film and the substrate have a large difference in sputtering yield. By utilizing the strong angular dependence of the sputtering yield and sputter at a low ion incidence angle with respect to the substrate surface of 7–12° and, furthermore, by avoiding sputtering parallel to the interface, samples with homogeneous thickness can be obtained. The technique is demonstrated on reactively sputtered titanium nitride coatings on high speed steel substrates. The difference in sputtering yields is about three for this film-substrate combination with the substrate being sputtered fastest.  相似文献   

20.
Here we report a new sample preparation method for three‐dimensional electron tomography. The method uses the standard film deposition and focused ion beam (FIB) methods to significantly reduce the problems arising from the projected sample thickness at high tilt angles. The method can be used to prepare tomography samples that can be imaged up to a ±75° tilt range which is sufficient for many practical applications. The method can minimize the problem of Ga+ contamination, as compared to the case of FIB preparation of rod‐shaped samples, and provides extended thin regions for standard 2D projection analyses. Microsc. Res. Tech. 75:1165–1169, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号