首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Carbon nanotube (CNT) reinforced SiCf/SiC composite was prepared by in situ chemical vapor deposition (CVD) growth of CNTs on SiC fibers then following polymer impregnation pyrolysis (PIP) process. The nature of CNTs and the microstructure of the as prepared CNT-SiCf/SiC composite were investigated. The mechanical properties of the as prepared CNT-SiCf/SiC composite were measured. The results reveal that the in situ CVD growth of CNTs on SiC fibers remarkably promotes the mechanical properties of SiCf/SiC composite. The secondly pull-out of CNTs from matrix during the pull-out of the SiC fibers from matrix consumes the deformation energies, resulting in promotion of the mechanical properties for composite.  相似文献   

2.
Carbon nanotube (CNT)/epoxy composite films were successfully developed by a combination of layer-by-layer and vacuum-assisted resin transfer molding methods using directly chemical vapor deposition (CVD)-spun CNT plies. CNT fractions in the composite films were found to be dramatically enhanced as the number of CNT plies increased. The as-prepared CNT/epoxy composite films with 24.4 wt.% CNTs exhibited ~ 10 and ~ 5 times enhancements in their strength and Young's modulus, respectively, and high toughness of up to 6.39 × 103 kJ/m3. Electrical conductivity reached 252.8 S/cm for the 20-ply CNT/epoxy films, which was 20 times higher over those of the CNT/epoxy composites obtained by conventional dispersion methods. This work proposed a route to fabricate high-CNT-fraction CNT/epoxy composites on a large scale. The high toughness of these CNT/epoxy composite films also makes them promising candidates as protective materials.  相似文献   

3.
Tantalum nitride (TaNx) films are usually used as barriers to the diffusion of copper in the substrate for electronic devices. In the present work, the TaNx coating plays an extra role in the iron catalyzed chemical vapor deposition production of carbon nanotubes (CNT). The CNTs were grown at 850 °C on TaNx films prepared by radio frequency magnetron sputtering. The correlation between the CNT morphology and growth rate, and the pristine TaNx film nature, is investigated by comparing the evolution of the nano-composition, roughness and nano-crystallinity of the TaNx films both after annealing and CVD at 850 °C.  相似文献   

4.
Tungsten oxide thin films were prepared by low temperature chemical vapor deposition (CVD) process from a metallorganic precursor at atmospheric pressure. The influence of the deposition temperature and oxygen flow-rate on the film structure, density and built-in stress were investigated in a comparative way employing different characterization techniques. The XRD structural analysis of the films showed co-existence of WO3 and WO2.9 phases. On the basis of the performed studies it was inferred that the film density decreases, the film stresses change and the film transmission increases at higher oxygen flow-rate values during the deposition. The growth window for preparation of tungsten oxide films with very low density, facilitating fast kinetics of the electrochromic effect, was established.  相似文献   

5.
In this article, three-dimensional (3D) heterostructured of MnO2/graphene/carbon nanotube (CNT) composites were synthesized by electrochemical deposition (ELD)-electrophoretic deposition (EPD) and subsequently chemical vapour deposition (CVD) methods. MnO2/graphene/CNT composites were directly used as binder-free electrodes to investigate the electrochemical performance. To design a novel electrode material with high specific area and excellent electrochemical property, the Ni foam was chosen as the substrate, which could provide a 3D skeleton extremely enhancing the specific surface area and limiting the huge volume change of the active materials. The experimental results indicated that the specific capacitance of MnO2/graphene/CNT composite was up to 377.1 F g?1 at the scan speed of 200 mV s?1 with a measured energy density of 75.4 Wh kg?1. The 3D hybrid structures also exhibited superior long cycling life with close to 90% specific capacitance retained after 500 cycles.  相似文献   

6.
Chemical vapour deposition of coatings   总被引:6,自引:0,他引:6  
Chemical Vapour Deposition (CVD) of films and coatings involve the chemical reactions of gaseous reactants on or near the vicinity of a heated substrate surface. This atomistic deposition method can provide highly pure materials with structural control at atomic or nanometer scale level. Moreover, it can produce single layer, multilayer, composite, nanostructured, and functionally graded coating materials with well controlled dimension and unique structure at low processing temperatures. Furthermore, the unique feature of CVD over other deposition techniques such as the non-line-of-sight-deposition capability has allowed the coating of complex shape engineering components and the fabrication of nano-devices, carbon-carbon (C-C) composites, ceramic matrix composite (CMCs), free standing shape components. The versatility of CVD had led to rapid growth and it has become one of the main processing methods for the deposition of thin films and coatings for a wide range of applications, including semiconductors (e.g. Si, Ge, Si1-xGex, III-V, II-VI) for microelectronics, optoelectronics, energy conversion devices; dielectrics (e.g. SiO2, AlN, Si3N4) for microelectronics; refractory ceramic materials (e.g. SiC, TiN, TiB2, Al2O3, BN, MoSi2, ZrO2) used for hard coatings, protection against corrosion, oxidation or as diffusion barriers; metallic films (e.g. W, Mo, Al, Au, Cu, Pt) for microelectronics and for protective coatings; fibre production (e.g. B and SiC monofilament fibres) and fibre coating. This contribution aims to provide a brief overview of CVD of films and coatings. The fundamental aspects of CVD including process principle, deposition mechanism, reaction chemistry, thermodynamics, kinetics and transport phenomena will be presented. In addition, the practical aspects of CVD such as the CVD system and apparatus used, CVD process parameters, process control techniques, range of films synthesized, characterisation and co-relationships of structures and properties will be presented. The advantages and limitations of CVD will be discussed, and its applications will be briefly reviewed. The article will also review the development of CVD technologies based on different heating methods, and the type of precursor used which has led to different variants of CVD methods including thermally activated CVD, plasma enhanced CVD, photo-assisted CVD, atomic layer epitaxy process, metalorganic assisted CVD. There are also variants such as fluidised-bed CVD developed for coating powders; electrochemical vapour deposition for depositing dense films onto porous substrates; chemical vapour infiltration for the fabrication of C-C composites and CMCs through the deposition and densification of ceramic layers onto porous fibre preforms. The emerging cost-effective CVD-based techniques such as electrostatic-aerosol assisted CVD and flame assisted CVD will be highlighted. The scientific and technological significance of these different variants of CVD will be discussed and compared with other vapour processing techniques such as Physical Vapour Deposition.  相似文献   

7.
Growing carbon nanotubes (CNT) on the surface of high performance carbon fibers (CF) provides a means to tailor the thermal, electrical and mechanical properties of the fiber–resin interface of a composite. However, many CNT growth processes require pretreatment of the fiber, deposition of an intermediate layer, or harsh growth conditions which can degrade tensile properties and limit the conduction between the fiber and the nanotubes. In this study, high density multi-wall carbon nanotubes were grown directly on two different polyacrylonitrile (PAN)-based carbon fibers (T650 and IM-7) using thermal Chemical Vapor Deposition (CVD). The influence of CVD growth conditions on the single-fiber tensile properties and CNT morphology was investigated. The mechanical properties of the resultant hybrid fibers were shown to depend on the carbon fiber used, the presence of a sizing (coating), the CNT growth temperature, growth time, and atmospheric conditions within the CVD chamber. The CNT density and alignment morphology was varied with growth temperature and precursor flow rate. Overall, it was concluded that a hybrid fiber with a well-adhered array of dense MWCNTs could be grown on the unsized T650 fiber with no significant degradation in tensile properties.  相似文献   

8.
β-FeSi2 films were deposited at 750 °C by a supplying Fe(CO)5 and SiH4 simultaneously during metal organic chemical vapor deposition (CVD). Films could be deposited using this precursors system, even though film deposition was not ascertained by the single supply of Fe(CO)5. Fe(CO)5 was probably decomposed in gas phases before it reached to substrate surface. It was suggested that a kind of intermediate reactant which was more stable than Fe(CO)5 created by the simultaneous supply of Fe(CO)5 and SiH4 makes Fe-Si films. Epitaxial β-FeSi2 films were obtained on Si(111) substrates, and neither carbide nor oxide phases were detected on XRD patterns.  相似文献   

9.
II–VI and IV–VI semiconductor films for solar cell applications, namely, CdTe, CdS, CdSe, PbS, PbSe and PbTe, can be prepared in a two-stage deposition process. In this work we illustrate the two-stage process to obtain PbTe and CdSe films from precursor oxide or hydroxide films deposited by chemical bath deposition (CBD). At the first stage, plumbonacrite Pb10(CO3)6O(OH)6 or cadmium oxide/hydroxide CdO2/Cd(O2)0.88(OH)0.24 films were deposited onto a glass substrate by CBD, using an ammonia-free low-temperature process in an alkaline aqueous solution with corresponding ion sources. Then, at the second stage, the obtained film was placed in a chemical vapor deposition (CVD) Hot Wall reactor with gas transportation, where it acted as a substrate in the reaction of isovalent substitution of Te or Se for the nonmetallic film component, thus forming PbTe and CdSe films. A nitrogen flux of 0.25 L/min was used as the transporting gas. The source temperature was adjusted between boiling (Tb) and melting point (Tm) to control the flux gas of the source. The substrate temperature was adjusted to improve film quality. Structural and optical investigation of the films proved their high quality, which determines the possibility of using them as solar cell elements, in particular, in multijunction cells.  相似文献   

10.
A well aligned growth of carbon nanotube (CNT) at the tip of SiO2 nanocone using chemical vapor deposition (CVD) method is described. Fe particle at the tip of a nanocone has been observed to work as the catalyst for CNT growth. Initially, a number of self organized SiO2 nanocones were grown via thermal annealing of MnCl2 on Si substrate in the presence of H2 gas. The average diameters of the tip and base of the nanocones were nearly 50 nm and 1 μm, respectively, with length up to 2.4 μm. At the tip of the nanocone a CNT was grown successfully. The CNT grows from the tip of the nanocone where Fe particles accumulate after the reduction of FeCl3 at 950 °C. The accumulation point of Fe particles depends on the orientation of the nanocone tip inside the reaction tube during CVD process. Therefore, the alignment of nanotube at the tip of SiO2 nanocone can be controlled by orientation of the nanocone in the reaction tube.  相似文献   

11.
Poly(diallyldimethylammoium chloride) (PDDA)/acid or base modified graphene oxide (MGO) composite (PDDA/MGO)-based gas barrier films were prepared by layer-by-layer (LBL) assembly method on polyethylene terephthalate (PET) substrate using a spray coating assisted deposition. The effect of pH on the hydrogen gas permeability (H2GP) values of the different MGO-based films was investigated to determine the optimum pH value of the MGO solution for the preparation of PDDA/MGO-based LBL assembly. Accordingly, the different numbers of bilayers based LBL-assembled films were prepared using alternate deposition of PDDA and MGO solutions and the H2GP values were measured for those assemblies. The films were characterized by XRD, FT-IR, and Raman spectroscopy analyses. The morphology of the LBL-assembled film was observed by cross-sectional field emission scanning electron microscopy which confirms densely packed layered structure. The H2GP of six bilayers PDDA/MGO composite film is 5.7 cc/m2?d?atm, which is much lower than that of pure PET substrate (170.7 cc/m2?d?atm), indicating 96.7% decrease in H2GP. This result suggests that the PDDA/MGO composite film could be used as a potential candidate to fabricate hydrogen gas barrier coating material.  相似文献   

12.
The α-Ni(OH)2-CNT composite films have been successfully synthesized by a simple chemical method and their supercapacitive properties were investigated by variation of CNT. The structural, compositional, morphological, wettability and electrochemical properties of the composite films were studied by using various characterization techniques. X-ray diffraction analysis revealed that the synthesized composite films are polycrystalline in nature. FT-Raman spectroscopy result showed the characteristic Raman band of CNT and α-Ni(OH)2 which confirmed the formation of α-Ni(OH)2-CNT composite. SEM micrographs showed porous microstructure of the synthesized films and hydrophilic nature of the films was confirmed from wettability studies. Furthermore, the effect of the variation of CNT on the electrochemical properties of the synthesized composite films was discussed. The electrochemical performance of the composite films was studied by using cyclic voltammetry (CV) and Galvanostatic charge–discharge (GCD) techniques. The α-Ni(OH)2-CNT composite showed highest specific capacitance of 544 F g?1 with high retention capability of 85% after 1500th cycle and excellent cycling stability.  相似文献   

13.
Infra red pyrometry is a sensitive, simple and low-cost technique commonly used for the measurement of the deposition temperature in CVD processes. We demonstrate in this work that this optical technique can be used as diagnostic tool to provide fruitful informations during the growth under atmospheric pressure of TiO2 films on various substrates chosen as an example of transparent oxide. Significant variations of the pyrometric signal were observed during the deposition of TiO2 thin films due to interferences in the growing film resulting from multi-reflections at the interfaces and scattering induced by the surface roughness. Modeling of the time dependence of the IR pyrometric signal allows simultaneously the determination of the layer thickness, the growth rate, surface roughness and refractive index of the thin films under the growth conditions. This diagnostic technique can be used for various transparent thin films grown on opaque substrates and is well adapted to control CVD processes operating either under atmospheric or low pressure and more generally any thermal treatment processes.  相似文献   

14.
Silicon oxide thin films have been deposited in plasma-assisted CVD process. With tetraethylorthosilcate (TEOS, Si(OC2H5)4) as precursor and an oxygen RF-plasma, thin films of 50-100 nm were deposited on silicon wafers. The deposition process was controlled in situ by monitoring the soft X-ray reflectivity of the growing layer. The influence of additional gases such as nitrogen and changes of the plasma conditions on the resulting films have been studied by analyzing the films with grazing incidence X-ray reflectometry, infrared spectroscopy, spectral ellipsometry and capacitance-voltage and current-voltage measurements were performed at different temperatures.  相似文献   

15.
Anodic aluminium oxide (RAAO) membranes with a mesoporous structure were prepared under strictly controlling experimental process conditions, and physically and chemically characterized by a wide range of experimental techniques. Commercial anodic aluminium oxide (CAAO) membranes were also investigated for comparison. We demonstrated that RAAO membranes have lower content of both water and phosphorus and showed better porosity shape than CAAO. The RAAO membranes were used for template growth of carbon nanotubes (CNT) inside its pores by ethylene chemical vapour deposition (CVD) in the absence of a catalyst. A composite material, containing one nanotube for each channel, having the same length as the membrane thickness and an external diameter close to the diameter of the membrane holes, was obtained. Yield, selectivity and quality of CNTs in terms of diameter, length and arrangement (i.e. number of tubes for each channel) were optimized by investigating the effect of changing the experimental conditions for the CVD process. We showed that upon thermal treatment RAAO membranes were made up of crystallized allotropic alumina phases, which govern the subsequent CNT growth, because of their catalytic activity, likely due to their Lewis acidity. The strict control of experimental conditions for membrane preparation and CNT growth allowed us to enhance the carbon structural order, which is a critical requisite for CNT application as a substitute for copper in novel nano-interconnects.  相似文献   

16.
We report the growth of nonpolar GaN epitaxial films on nearly lattice-matched LiGaO2 substrate by a chemical vapor deposition (CVD) method. The structural, morphological and optical properties of GaN films were investigated by X-ray diffraction, scanning electron microscopy, transmission electron microscopy (TEM), atomic force microscopy, and photoluminescence (PL) measurements. We found that growth temperature plays an important role in the preparation of pure m-plane films by CVD method. Pure m-plane GaN was achieved by optimized growth condition. Epitaxial relationship was revealed by TEM study. The PL spectrum at room temperature has a strong near-band-edge emission at 3.41 eV and a weak yellow luminescence band.  相似文献   

17.
High-density polyethylene (HDPE) composite films filled with carbon fibers (CF), carbon nanotubes (CNT) as well as hybrid filler of CF and CNT were prepared by melt mixing. The electrical and self-heating properties of the composite films were investigated. Results showed that: when the total content of filler was the same, (i) the electrical resistivity of composite films filled with hybrid fillers was lower than those with single filler; (ii) the composite films filled with hybrid fillers displayed more excellent self-heating performance such as a higher surface temperature (T s), a more rapid temperature response, and a better thermal stability. This indicates the synergetic effect of combination of CNT and CF on improvement of the electrical and self-heating properties of HDPE-based composite films. The synergy can be considered to be the result of the fibrous filler CF acting as long distance charge transporters and the CNT serving as an interconnection between the fibers by forming local conductive paths.  相似文献   

18.
Carbon nanotube (CNT) composite thin films were prepared on a single-crystal silicon substrate by a self-assembling process from a specially formulated solution. Rare earth solution (RES) surface modification and appropriate acid-treatment methods were used to functionalise carbon nanotubes (CNTs). Silane coupling regent (3-mercaptopropyl trimethoxysilane (MPTS)) was prepared first. The terminal thiol groups (–SH) in the film was oxidised to sulphonic acid groups (–SO3H) in situ to enhance the film with good chemisorption ability. Treated Caron nanotubes were deposited on the oxidised MPTS–SAM by means of chemisorption with the SO3H group. The surface energy, chemical composition, phase transformation and surface morphology of the films were analysed using contact angle measurements, X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and atomic force microscopy. As a result, a conclusion could be made that some lanthanum elements react with –SO3H groups on the surface of the substrate by a chemical bond, which will improve the bonding strength between the films and the CNTs. Since the CNT thin films were well adhered to the silicon substrate, it might find promising application in the surface-modification of single-crystal Si and SiC in microelectromechanical systems (MEMS).  相似文献   

19.
Lithium niobate films grown epitaxially on sapphire substrate were prepared using a thermal chemical vapor deposition method from the metalorganic compounds Li(C11H19O2) and Nb(OC2H5)5. The range of operating conditions for obtaining pure epitaxially grown LiNbO3 without other oxides is within that for obtaining pure polycrystalline LiNbO3 grown on silicon substrate. On analyzing the composition of the epitaxially grown LiNbO3 film, the composition of the film was similar to that of the LiNbO3 solid solution in the phase diagram of the Li-Nb composite oxide obtained for crystal growth from a molten solution.  相似文献   

20.
Stainless steel (SUS304) plates were coated with TiC films using chemical vapour deposition (CVD) as a candidate material for UT-3 which is a promising process of hydrogen production through the thermal decomposition of water. The corrosion behaviour of the TiC film-coated SUS304 plates was examined in a Br2-O2-Ar atmosphere. The effects of CVD conditions on the surface texture, deposition rates and preferred orientation of the TiC films were investigated, and the optimum CVD conditions determined. Corrosion of the TiC film-coated SUS304 plates in the Br2-O2-Ar atmosphere was mainly caused by oxidation of the TiC film and SUS304 substrate. Microcracks in the TiC films lead to corrosion of the SUS304 substrate. At oxygen partial pressures below 0.1 kPa, weight loss was observed due to the formation of volatile titanium and iron bromides. At oxygen partial pressures greater 0.1 kPa, the time dependence of weight increase was parabolic due to the formation of oxide scale. The oxide scales were mixtures of TiO2, Fe2O3 and Fe3O4. The corrosion mechanism is discussed thermodynamically.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号