首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
一种自适应学习的混合高斯模型视频目标检测算法   总被引:4,自引:0,他引:4       下载免费PDF全文
为解决背景模型的更新问题,提高视频运动目标检测性能,通过定义像素样本对模型更新的有效因子,提出一种自适应学习的混合高斯模型检测算法。用样本有效因子的历史累加量反映背景模型的质量,并用于动态调整模型更新速度。同时,对检测出的前景区域进行目标分析,由分析结果间接控制模型更新,保证更新的准确性和模型的稳定性。实验结果表明,该算法可以快速适应背景变化,同时保证目标检测的完整性。算法性能已在不同监控场景中得到验证。  相似文献   

2.
针对传统鲁棒高斯混合模型EM算法存在模型成分参数难以精确获取最优解以及收敛速度随样本数量的增加而快速降低等问题,提出了一种基于鲁棒高斯混合模型的加速EM算法。该算法采用隐含参量信息熵原理对高斯模型分量个数进行挑选以及使用Aitken加速方法减少算法的迭代次数,当接近最优解时,EM步长的变化极为缓慢,这时使用Broyden对称秩1校正公式进行校正,使算法快速收敛,从而能够在很少的迭代次数内精确获取高斯混合模型的模型成分数。文中算法通过与传统鲁棒EM算法和无监督的EM算法的聚类结果进行比较,实验证明该算法对初始值的设定并不敏感(成分数c无需预先设定),并且能够降低算法运算时间,提高聚类模型成分数(类簇)的正确率。  相似文献   

3.
一种快速、鲁棒的有限高斯混合模型聚类算法   总被引:1,自引:0,他引:1  
有限混合模型聚类是一种基于概率模型的有效聚类方法。针对高斯混合模型的聚类算法,分别对模型的成分混合系数及样本所属成分的概率系数施加熵惩罚算子,实现对模型成分数的两级控制,快速消除无效成分,使算法能在很少的迭代次数内收敛到确定解。传统算法对初始值(成分数目c需事先指定)的设置非常敏感,容易导致EM算法陷入局部最优解或收敛到解空间的边界,而文中的算法对初始值的设定没有特殊的要求,实验证明其具有很好的鲁棒性。  相似文献   

4.
在多高斯模型的基础上,从场景中模型分布不均匀性出发,提出了一种新的快速背景差算法。该算法针对混合高斯模型中固定模型数量不足的问题,建立了模型产生和退出的机制,使模型数量能够自动适应场景特点,实现了高斯模型的实时自适应分布,即提高了准确性又有效地减少了模型的总量;同时,针对混合高斯模型中计算量大的问题,对模型参数的计算进行了优化,将耗时的浮点运算转化为整型运算,减少了计算量;算法中引入了生存时间和模型重现频率的概念,通过对模型重现频率的限制有效抑制高频噪声。与混合高斯模型的实验结果对比说明,该快速算法保持了原算法的优点,执行速度提高1倍以上,检测结果准确,算法内存消耗小,前景轮廓清晰,抑制高频噪声的能力强,整体效果优于混合高斯模型的背景差算法。  相似文献   

5.
提出一种鲁棒自适应表面模型,该模型中每个像素值的变化过程由一混合高斯分布描述.为了适应目标表面的变化,这些高斯参数在跟踪期间通过在线的EM算法自适应更新;在估计目标状态时。采用了粒子滤波算法。设计了基于自适应表面模型的观测模型;在处理遮挡时,采用了一种鲁棒估计技术.多组试验结果表明,该算法对光照变化、姿态变化、部分或完全遮挡下的跟踪具有较强的鲁棒性.  相似文献   

6.
基于分层高斯混合模型的半监督学习算法   总被引:10,自引:0,他引:10  
提出了一种基于分层高斯混合模型的半监督学习算法,半监督学习算法的学习样本包括已标记类别样本和未标记类别学习样本。如用高斯混合模型拟合每个类别已标记学习样本的概率分布,进而用高斯数为类别数的分层高斯混合模型拟合全部(已标记和未标记)学习样本的分布,则形成为一个基于分层的高斯混合模型的半监督学习问题。基于EM算法,首先利用每个类别已标记样本学习高斯混合模型,然后以该模型参数和已标记样本的频率分布作为分层高斯混合模型参数的初值,给出了基于分层高斯混合模型的半监督学习算法,以银行票据印刷体数字识别做实验,实验结果表明,本算法能够获得较好的效果。  相似文献   

7.
针对在线boosting跟踪算法在目标外观发生大幅度变化以及遮挡时易产生“漂移”导致目标丢失问题进行了研究,提出一种尺度自适应在线鲁棒目标跟踪算法。算法基于目标灰度或彩色直方图统计特征构建权重图像,通过对权重图像的矩特征分析,可以实现对目标尺度的自适应调整,同时该算法引入半监督学习策略,很好地解决了由于在线学习导致的跟踪失败问题。实验结果表明,本文算法很好地解决了遮挡、目标外观和尺度变化时的鲁棒跟踪问题。与EM-shift,MIL和SPT三种算法相比,跟踪成功率以及鲁棒性均有所提高。  相似文献   

8.
为了精确定位和分割电子布生产过程中产生的疵点,提出一种基于ButterWorth滤波和EM算法的电子布疵点检测方法。因电子布的背景纹理对疵点检测存在影响,首先采用ButterWorth滤波弱化图像背景纹理信息;再应用高斯混合模型对预处理后的图像进行表征,通过EM算法迭代模型的最优解,对像素进行标记;最后,根据标记结果分离背景与疵点区域,定位并分割疵点。实验结果表明,该方法既能准确定位疵点位置,又能有效保留疵点的细节信息,并且能够检测多种类型的疵点,在疵点检测方面具有一定的参考价值。  相似文献   

9.
自适应模糊逻辑系统的鲁棒学习算法   总被引:1,自引:0,他引:1       下载免费PDF全文
通过对常规最小方差型目标函数局限性的分析,根据鲁棒统计学理论和目标函数在参数学习中的导向作用,对目标函数进行修正,在此基地之上,提出一种模糊逻辑系统的鲁棒学习算法,在噪声环境中,通过对该算法的仿真验证以及与常规算法性能的比较,表明该鲁棒学习算法在逼近精度和鲁棒性等方面优于传统方法,在实际工程中具有较高的应用价值。  相似文献   

10.
道路视频监控中经常存在车辆缓慢运动或短暂停留的情况。针对传统混合高斯模型背景减除法对环境突变敏感和对缓慢运动目标丢失信息的问题,提出一种改进的自适应车辆检测方法。首先,在参数更新前对像素值分类并根据分类结果设置模型更新率,抑制缓慢运动前景被训练成背景;引入一个跟踪环境变化的度量因子,当环境突变时实现背景减除和帧差法的自适应切换,滤除环境变化的干扰;最后通过生态学滤波得到准确的运动目标。实验表明,该算法对白天实时路况视频中的运动车辆具有较好的检测效果。  相似文献   

11.
基于自适应策略的稳健视频水印算法   总被引:2,自引:1,他引:2  
稳健的视频水印算法对数字视频产品的版权保护具有重要意义。在先前提出的脆弱数字水印算法的基础上,通过采用自适应策略对视频序列中的不同图片根据其特点采用不同的嵌入算法,使得水印的嵌入对视频码流的改动最小,同时结合纠错编码技术,给出了一种较为稳健且简单、快速的视频数字水印算法。经仿真测试后,实验结果显示提出的视频水印新算法具有较强的抗二次编码攻击和噪声污染的能力,具有较好的稳健性。  相似文献   

12.
基于场景模型与统计学习的鲁棒行人检测算法   总被引:1,自引:0,他引:1  
杨涛  李静  潘泉  张艳宁 《自动化学报》2010,36(4):499-508
提出一种基于场景模型和统计学习的行人检测算法. 针对训练行人检测器时面临的动态场景的复杂性和行人样本多样性等问题, 通过背景建模, 从场景的背景图像上提取有限的负样本用于训练, 大幅度提高了分类器的检测率, 同时降低了虚警; 提出一种快速弱分类器选择算法, 根据正、负样本特征大小的分布和期望的检测率, 直接求解特征大小的阈值范围, 能够满足在线训练和更新检测器的要求; 提出一种基于正样本错误率的训练算法, 先根据正样本加权错误率选择弱分类器, 快速提高检测率, 在训练结束后调整最终分类器的加权系数, 在保证检测率的同时尽可能降低虚警率. 实验中构建了一个试验视频数据库和行人样本库, 数据库包括雨、雪、阴影、季节变化、摄像机平移、旋转、缩放等情况, 并设计实现了一个实时行人检测系统BMAT (Background modeling and Adaboost training), 实验结果证明了算法的有效性.  相似文献   

13.
球场检测在体育视频内容分析中有着重要作用.为了克服由于不同光照、不同相机、不同拍摄角度造成球场颜色的非均一性问题,提出了一种基于自适应高斯混合模型(adaptive Gaussian mixture model, GMM)的球场检测算法.该算法首先从视频中任意抽取一些图像,并自动分析这些图像的主要颜色,从中找到主颜色的近似分布,然后,利用GMM拟合主要颜色分布.为提高模型的适应能力,在球场检测过程中,利用当前GMM球场检测结果和增量期望最大(incremental expectation maximum, IEM)算法不断更新模型参数,从而得到更加准确的参数估计,并用于后续图像中球场和非球场像素进行分类.最后,根据球场区域在图像中的分布,对足球比赛场景进行分类.实验证明,提出的算法具有良好的性能.  相似文献   

14.
提出一种基于混合高斯模型(GMM)与码本算法的前景目标检测方法。利用GMM进行背景图像建模并初步提取前景对象,对背景图像进行码本学习,将码本建模得到的前景对象与GMM得到的前景对象相融合,根据前后2次帧间差分得到前景对象的比例关系,自适应地更新高斯参数和扩展码字,得到前景对象目标。实验结果表明,该方法实时性好,可消除视频序列中的阴影和鬼影,提取完整的前景对象。  相似文献   

15.
一种基于贪心EM算法学习GMM的聚类算法   总被引:2,自引:0,他引:2  
传统的聚类算法如k-means算法需要一些先验知识来确定初始参数,初始参数的选择通常会对聚类结果生产很大的影响.提出一种新的基于模型的聚类算法,通过优化给定的数据和数学模型之间的适应性发现数据对模型的最好匹配.由于高斯混合模型可以看作是一种"软分配聚类"方法,该算法结合一种贪心的EM算法来学习高斯混合模型(GMM),由贪心EM算法实现高斯混合模型结构和参数的自动学习,而不需要先验知识.这种聚类算法可以克服k-means等算法的缺点,实验结果表明该算法具有更好的聚类效果.  相似文献   

16.
王量  刘连山 《计算机工程》2010,36(6):142-145
提出一种在MPEG-2视频流中嵌入水印的方法。将水印嵌入到所有B帧的运动矢量中,嵌入时对每帧中的运动矢量进行分组,每组嵌入1位水印信息,提高水印的鲁棒性。采用一种自适应策略,通过修改运动矢量幅值的奇偶性来嵌入水印,减少对运动矢量个数及其幅值大小的改变,提高水印在压缩视频中的不可见性。实验结果表明,该算法具有较好的抗多次编码及码率改变攻击的能力,能够满足水印的实时嵌入和提取。  相似文献   

17.
针对网格计算可靠性需求提出了一种自适应的网格错误检测框架,该错误检测框架包括两个重要算法:单进程间错误检测算法以及错误检测器管理算法.该错误检测框架借鉴分布式不可靠错误检测服务研究以及关系型网格监控架构的思想,按照层次是方式组织错误检测服务.错误检测框架能够根据系统的运行状况以及用户需求动态调整系统参数以及系统部署结构,最后给出了系统的性能数学分析以及实验评测,结果显示系统具有良好的可扩展性和使用灵活性.  相似文献   

18.
图割用于图像分割需用户交互,基于激光雷达传感器,提出了阈值法得到目标的外截矩形,再映射到图像完成交互.针对GrabCut算法耗时、对局部噪声敏感和在复杂背景提取边缘不理想等缺点,提出了背景自适应的GrabCut算法,即在确定背景像素中选取可能目标像素邻近的一部分像素作为背景像素,使背景变得简单,尤其适用于前景像素在整幅图中所占比例较小和在目标像素周围的背景相对简单的情况.实验结果表明,所提算法与GrabCut算法相比,减少了图的节点数,降低了错误率,有效的提高了运行效率,提取的目标边缘信息更加完整、平滑.  相似文献   

19.
传统的遗传算法在数据量不足的单机情况下可能存在早熟的现象,遗传算法对搜索范围的依赖性很强,大搜索范围的遗传算法往往有更好的表现。为解决以上问题,可把Spark海量存储和并行计算的能力运用到遗传算法的求解上,实现一种粗粒度的并行遗传算法。利用Spark并行执行遗传算法的选择、交叉和变异等操作,可以大大提高遗传算法的搜索范围和执行速度。实验将改进后的遗传算法应用到物流配送问题中,结果表明,与单机和传统的并行模型相比,基于Spark的遗传算法在运行时间上明显减少,同时早熟的现象也得到了缓解。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号