共查询到17条相似文献,搜索用时 93 毫秒
1.
在K-means算法中,聚类数k是影响聚类质量的关键因素之一。目前,已经提出了许多确定最佳k值的聚类有效性方法,但这些方法都不能很好地处理两种数据集:类(簇)密度不同的数据集和类间距比较小的数据集(含有合并簇的数据集)。为此,提出了一种新的聚类有效性函数,该函数定义为数据特征轴总长度的平方与最小类间距的比值,最佳聚类数为这个比值达到最小时对应的k值。同时,为减小K-means算法对噪声和孤立点数据的敏感性,使用了基于加权的改进K-平均的方法计算类中心。实验证明,与其他算法相比,基于新聚类有效性函数的K-wmeans算法不仅降低了噪声和孤立点数据对聚类结果的影响,而且能有效地处理上面提到的两种数据集,明显提高了数据聚类质量。 相似文献
2.
一种改进K-means算法的聚类算法CARDBK 总被引:1,自引:0,他引:1
CARDBK聚类算法与批K-means算法的不同之处在于,每个点不是只归属于一个簇,而是同时影响多个簇的质心值,一个点影响某一个簇的质心值的程度取决于该点与其它离该点更近的簇的质心之间的距离值。 从聚类结果的熵、纯度、F1值、Rand Index和NMI等5个性能指标值来看,与多个不同算法在多个不同数据集上分别聚类相比, 该算法具有较好的聚类结果;与多个不同算法在同一数据集上很多不同的初始化条件下分别聚类相比,该算法具有较好且稳定的聚类结果;该算法在不同大小数据集上聚类时具有线性伸缩性且速度较快。 相似文献
3.
针对初始聚类中心对传统K-means算法的聚类结果有较大影响的问题,提出一种依据样本点类内距离动态调整中心点类间距离的初始聚类中心选取方法,由此得到的初始聚类中心点尽可能分散且具代表性,能有效避免K-means算法陷入局部最优。通过UCI数据集上的数据对改进算法进行实验,结果表明改进的算法提高了聚类的准确性。 相似文献
4.
针对传统K-means算法对初始中心十分敏感,聚类结果不稳定问题,提出了一种改进K-means聚类算法。该算法首先计算样本间的距离,根据样本距离找出距离最近的两点形成集合,根据点与集合的计算公式找出其他所有离集合最近的点,直到集合内数据数目大于或等于[α]([α]为样本集数据点数目与聚类的簇类数目的比值),再把该集合从样本集中删除,重复以上步骤得到K(K为簇类数目)个集合,计算每个集合的均值作为初始中心,并根据K-means算法得到最终的聚类结果。在Wine、Hayes-Roth、Iris、Tae、Heart-stalog、Ionosphere、Haberman数据集中,改进算法比传统K-means、K-means++算法的聚类结果更稳定;在Wine、Iris、Tae数据集中,比最小方差优化初始聚类中心的K-means算法聚类准确率更高,且在7组数据集中改进算法得到的轮廓系数和F1值最大。对于密度差异较大数据集,聚类结果比传统K-means、K-means++算法更稳定,更准确,且比最小方差优化初始聚类中心的K-means算法更高效。 相似文献
5.
一种K-means聚类算法的改进与应用 总被引:1,自引:0,他引:1
K-means算法是基于距离作为相似性度量的聚类算法,传统的K-means算法存在难以确定中心值个数、受噪声及孤立点影响较大的缺点。对此,利用类间相异度与类内相异度改进初始值K,以尽量减少人工干预;同时计算数据库中每一点与剩余点的距离和距离均和,将两者的大小比较作为识别孤立点和噪声点的依据,从而删除孤立点,减少对数据聚类划分的影响。最后将改进后的Kmeans算法应用于入侵检测系统并进行仿真实验,结果表明,基于改进的K-means算法的入侵检测系统一定程度上降低了误报率及误检率,提高了检测的准确率。 相似文献
6.
吕小刚 《电脑编程技巧与维护》2014,(24):33-35
K-means算法是数据挖掘中非常经典的算法。通过数据之间内在关联性将同类数据组合在一起,这对于大量混乱的数据进行资源整合具有非常重要的意义。就K-means聚类算法在文本处理领域的应用展开研究,分析在文本聚类过程中数据的处理流程,涉及文本中特征项的选取、文本的预处理操作、文本的结构化表示和文本之间相似度计算等步骤。 相似文献
7.
K-means算法所使用的聚类准则函数是将数据集中各个簇的误差平方值直接相加而得到的,不能有效处理簇的密度不均且大小差异较大的数据集。为此,将K-means算法的聚类准则函数定义为加权的簇内标准差之和,权重为簇内数据对象数占总数目的比例。同时,调整了传统K-means算法将数据对象重新分配给簇的方法,采用一个数据对象到中心点的加权距离代替传统K-means算法中的距离,将数据对象分配给使加权距离最小的中心点所在的簇。实验结果表明,针对模拟数据集的聚类,改进K-means算法可以明显减少大而稀的簇中数据对象被错误地分配到相邻的小而密簇的可能性,改善了聚类的质量;针对UCI数据集的聚类,改进算法使得各个簇更为紧凑,从而验证了改进K-means算法的有效性。 相似文献
8.
随着数据量的不断增加,传统的数据处理方法已经无法满足现代大数据处理的需求。近年来,云计算作为一种新型的数据处理方法逐渐被广泛采用。在云计算背景下,K-means聚类算法是一个重要的数据挖掘工具,拥有广泛的应用场景,包括图像处理、文本分析等。但是,当数据量大到一定程度时,传统的K-means聚类算法存在计算效率低和内存占用过大的问题。文章介绍了一种基于云计算的并行K-means聚类算法设计方案,介绍了云计算的概念、云平台技术的应用、云计算平台对并行计算的支持。实验结果表明,K-means算法在处理大规模数据集时的运行时间较长,而采用云计算平台进行并行化计算可以有效提高算法的运行效率。 相似文献
9.
针对K-means算法中聚类结果易受初始聚类中心影响的缺点,提出一种改进初始聚类中心选择的算法.该算法不断寻找最大聚类,并利用距离最大的两个数据对象作为开始的聚类中心对该聚类进行分裂,如此反复,直到得到指定聚类中心个数.用KDD CUP99数据集对改进算法进行仿真实验,实验数据表明,用该算法获得的聚类中心进行聚类相对原始的K-means算法,能获得更好的聚类结果. 相似文献
10.
K-means算法是被广泛使用的一种聚类算法,传统的K-means算法中初始聚类中心的选择具有随机性,易使算法陷入局部最优,聚类结果不稳定。针对此问题,引入多维网格空间的思想,首先将样本集映射到一个虚拟的多维网格空间结构中,然后从中搜索出包含样本数最多且距离较远的子网格作为初始聚类中心网格,最后计算出各初始聚类中心网格中所包含样本的均值点来作为初始聚类中心。此法选择出来的初始聚类中心与实际聚类中心拟合度高,进而可据此初始聚类中心稳定高效地得到最终的聚类结果。通过使用计算机模拟数据集和UCI机器学习数据集进行测试,结果表明改进算法的迭代次数和错误率比较稳定,且均小于传统K-means算法测试结果的平均值,能有效避免陷入局部最优,并且聚类结果稳定。 相似文献
11.
12.
13.
改进遗传算法的K-均值聚类算法研究 总被引:2,自引:0,他引:2
传统的k-均值算法对初始聚类中心的敏感很大,极易陷入局部最优值;利用遗传算法或免疫规划算法解决初始聚类中心是较好的方法,但后期容易出现收敛速度缓慢.为了克服上述缺点,文章将免疫原理的选择操作机制引入遗传算法中,使个体浓度和适应度同时对个体的选择施加影响,以此提出基于改进遗传算法的K-均值聚类算法,该方法利用K-均值算法的高效性和改进遗传算法的全局优化搜索能力,较好地解决了聚类中心优化问题.试验结果表明,本算法能够有效改善聚类质量,并且具有较好的收敛速度. 相似文献
14.
文章介绍了Web文档聚类中普遍使用的基于分割的k-means算法,分析了k-means算法所使用的向量空间模型和基于距离的相似性度量的局限性,从而提出了一种改善向量空间模型以及相似性度量的方法。实验表明,改进后的k-means算法不仅保留了原k-means算法效率高的优点,而且具有更高的准确性。 相似文献
15.
基于核的K-均值聚类 总被引:17,自引:0,他引:17
将核学习方法的思想应用于K-均值聚类中,提出了一种核K-均值聚类算法,算法的主要思想是:首先将原空间中待聚类的样本经过一个非线性映射,映射到一个高维的核空间中,突出各类样本之间的特征差异,然后在这个核空间中进行K-均值聚类。同时还将一种新的核函数应用于核K-均值聚类中以提高算法的速度。为了验证算法的有效性,分别利用人工和实际数据进行K-均值聚类和核K-均值聚类,实验结果显示对于一些特殊的类分布数据,核K-均值聚类比K-均值聚类具有更好的聚类效果。 相似文献
16.
K-means算法是聚类分析中的一种经典算法,但是K-means算法是一种局部搜索技术,受初始聚类中心的影响可能会过早收敛于最优解.而遗传算法具有良好的全局优化的能力,将遗传算法与K-means算法结合起来,能很好解决这一问题.在结合的过程中,又在最传统的遗传算法中改进染色体编码与适应度函数,从而优化k个中心点的选取,... 相似文献
17.
为了解决K-means算法在聚类数量增多的情况下,因选择了不合适的中心初值而影响到聚类效果这一问题,提出了一种局部迭代的快速K-means聚类算法(PIFKM+?)。该算法在K-means聚类的基础上,不断寻找能够被分割的聚类簇和能够被删除的聚类簇,并对受影响的局部数据进行重新聚类处理,降低了整个聚类更新的时间复杂度,提高了聚类的效果。PIFKM+?算法在面对聚类数量众多的情况下,具有能够快速更新聚类、对聚类中心初值不敏感、能够提高聚类精确度等优势。通过与K-means和K-means++两种算法的比较,在仿真数据集和真实数据集的综合实验下,验证了该算法的精确性、高效率性和可扩展性,同时实验结果的统计分析表明该算法在提高了聚类精确度的同时并没有损失太多的时间效率。 相似文献