共查询到16条相似文献,搜索用时 46 毫秒
1.
针对稀疏子空间聚类(SSC)求得的系数矩阵过于稀疏和最小二乘回归子空间聚类(LSR)求得的系数矩阵过于稠密的问题,文中提出基于协同表示的子空间聚类算法(SCCR).结合SSC和LSR的优点,将l1范数和Frobenius范数引入同一优化问题中,使系数矩阵保证在同一子空间数据点联系(如LSR)的同时,消除不同子空间数据点之间的联系(如SSC).然后利用此系数矩阵建立相似矩阵,应用谱聚类得到聚类结果.实验表明SCCR可以提高聚类性能. 相似文献
2.
针对现有子空间聚类方法处理类簇间存在重叠时聚类准确率较低的问题,文中提出基于概率模型的重叠子空间聚类算法.首先采用混合范数的子空间表示方法将高维数据分割为若干个子空间.然后使用服从指数族分布的概率模型判断子空间内数据的重叠部分,并将数据分配到正确的子空间内,进而得到聚类结果,在参数估计时利用交替最大化方法确定函数最优解.在人造数据集和UCI数据集上的测试实验表明,文中算法具有良好的聚类性能,适用于较大规模的数据集. 相似文献
3.
子空间聚类算法只能处理小规模数据,且无法处理样本外数据.针对此问题,文中提出采用二次采样策略的子空间聚类框架(TSSC).该框架由两个核心部件组成:判别性协作表示(DCR)与多尺度K近邻(KNN)采样方法.在TSSC中,DCR首先结合多尺度KNN对数据点进行特征变换,从而保证属于同一子空间的点有更一致的表示.为了提高算法的可扩展性,TSSC在新的特征空间中使用多尺度KNN对数据进行二次采样,并根据采样点获得的初步聚类结果训练线性分类器,最后根据学习得到的分类器对剩余样本点进行分类,获得最终的聚类结果.在真实数据集上的实验验证TSSC的有效性. 相似文献
4.
现有的类属型数据子空间聚类方法大多基于特征间相互独立假设,未考虑属性间存在的线性或非线性相关性.提出一种类属型数据核子空间聚类方法.首先引入原作用于连续型数据的核函数将类属型数据投影到核空间,定义了核空间中特征加权的类属型数据相似性度量.其次,基于该度量推导了类属型数据核子空间聚类目标函数,并提出一种高效求解该目标函数的优化方法.最后,定义了一种类属型数据核子空间聚类算法.该算法不仅在非线性空间中考虑了属性间的关系,而且在聚类过程中赋予每个属性衡量其与簇类相关程度的特征权重,实现了类属型属性的嵌入式特征选择.还定义了一个聚类有效性指标,以评价类属型数据聚类结果的质量.在合成数据和实际数据集上的实验结果表明,与现有子空间聚类算法相比,核子空间聚类算法可以发掘类属型属性间的非线性关系,并有效提高了聚类结果的质量. 相似文献
5.
相似性度量是聚类分析的重要基础,如何有效衡量类属型符号间的相似性是相似性度量的一个难点.文中根据离散符号的核概率密度衡量符号间的相似性,与传统的简单符号匹配及符号频度估计方法不同,该相似性度量在核函数带宽的作用下,不再依赖同一属性上符号间独立性假设.随后建立类属型数据的贝叶斯聚类模型,定义基于似然的类属型对象-簇间相似性度量,给出基于模型的聚类算法.采用留一估计和最大似然估计,提出3种求解方法在聚类过程中动态确定最优的核带宽.实验表明,相比使用特征加权或简单匹配距离的聚类算法,文中算法可以获得更高的聚类精度,估计的核函数带宽在重要特征识别等应用中具有实际意义. 相似文献
6.
传统子空间聚类算法向量化时忽略样本的自然结构信息,并且容易造成高维度小样本问题,从而导致聚类信息损失.为了弥补该缺陷,文中提出基于最小二乘回归的分块加权子空间聚类(WB-LSR).首先,将样本按维度分成若干块,并求得各个块对应的仿射矩阵.然后,通过相互投票方式对各仿射矩阵设置权重,将加权和作为最终的仿射矩阵.在图像数据和视频数据上的实验表明,文中方法能有效提升聚类准确率. 相似文献
7.
针对最小二乘回归子空间聚类算法存在的数据局部相关性信息缺失、系数矩阵稀疏性不足的缺点,提出局部约束加强的最小二乘回归子空间聚类算法.在原始的最小二乘回归子空间聚类算法的基础上加入数据局部相关性约束,使表示系数矩阵的块对角性质更明显.同时,提出相似度矩阵构造方法,有效提高类内相似度,降低类间相似度.实验表明文中算法可以有效提高聚类的精确度,从而验证算法有效可行. 相似文献
8.
高维数据集的处理是计算机视觉领域的核心,子空间聚类是实现高维数据聚类使用最广泛的方法之一.传统的子空间聚类假定数据来自不同的线性子空间,且不同子空间的区域不重叠.然而,现实中的数据往往不满足这两个约束条件,使得子空间聚类的效果受到影响.为了解决这两个问题,引入核化子空间来解决子空间数据的非线性问题,引入子空间系数矩阵的... 相似文献
9.
10.
11.
12.
子空间聚类改进算法研究综述 总被引:1,自引:0,他引:1
高维数据聚类是聚类技术的难点和重点,子空间聚类是实现高维数据集聚类的有效途径。CLIQUE算法是最早提出的基于密度和网格的子空间聚类算法,自动子空间聚类算法的实用性和高效性,带来了子空间聚类算法的空前发展。深入分析CLIQUE算法的优点和局限性;介绍了一些近几年提出的子空间聚类算法,并针对CLIQUE算法的局限性作了改进,聚类的效率和精确性得到了提高;最后对子空间聚类算法的发展趋势进行了讨论。 相似文献
13.
针对大多数子空间聚类方法处理非线性数据时聚类效果不理想、不同子空间数据相似性较高及聚类发生错误时无法及时校验的问题,提出局部加权最小二乘回归的重叠子空间聚类算法.利用K近邻思想突出数据的局部信息,取代非线性数据结构,通过高斯加权的方法选择最相似的近邻数据点,得到最优表示系数.然后使用重叠概率模型判断子空间内数据的重叠部分,再次校验聚类结果,提高聚类准确率.在人造数据集和真实数据集上分别进行测试,实验表明,文中算法能够取得较理想的聚类结果. 相似文献
14.
为了有效挖掘序列数据的时空信息,提出联合lp和l2,p范数极小化的序列子空间聚类算法.首先,定义依赖于样本距离的权重,构造基于l2,p范数的时序图,刻画数据在时间维度上的局部相似性.然后,考虑到非凸lp0
l1范数,能更有效地切断语义无关数据间的联系,所以采用lp范数度量表示矩阵的稀疏性.最后,通过线性化交替方向法求解优化模型.在视频、运动、人脸数据上的实验表明文中算法的有效性. 相似文献
15.
基于核的主成分分析(KPCA)方法能提取数据的非线性特征,但特征提取的效率却与训练样本集合的容量成反比.文中提出一种特征提取的自适应核特征子空间方法来快速有效地提取特征.该方法和KPCA方法在理论分析框架上是一致的,但通过自适应的选取核子空间的张成向量,能在提高特征提取效率的同时不影响特征提取的精度.针对模拟数据和MNIST数据的实验结果表明文中方法优于经典KPCA方法和参考方法. 相似文献
16.
针对多视角子空间聚类问题,提出基于隐式低秩稀疏表示的多视角子空间聚类算法(LLSMSC).算法构建多个视角共享的隐式结构,挖掘多视角之间的互补性信息.通过对隐式子空间的表示施加低秩约束和稀疏约束,捕获数据的局部结构和稀疏结构,使聚类结果更准确.同时,使用基于增广拉格朗日乘子交替方向最小化算法高效求解优化问题.在6个不同数据集上的实验验证LLSMSC的有效性和优越性. 相似文献