共查询到20条相似文献,搜索用时 62 毫秒
1.
针对行人重识别中已有方法难以解决行人图像光照、视角变化大的问题,提出了一种基于特征融合的行人重识别方法。首先利用Retinex变换对图像进行预处理;然后将CN特征与原有的颜色和纹理特征融合,并通过区域和块划分的方式提取直方图获得图像特征;最后采用不同的距离学习方法在4个数据集上进行行人重识别。实验结果表明,融合后的特征对行人图像具有更好的表述能力,实现了重识别精度的较大提升,验证了方法的有效性。 相似文献
2.
针对行人再识别中相似性度量误差引起的识别效果较差的问题,提出多置信度重排序的行人再识别算法,通过对再排序过程中测试样本的置信度进行评估,提高行人再识别的准确性.首先对目标样本及测试样本依据深度学习网络ResNet50获得描述特征.然后对目标样本与测试样本之间的相似性进行初始排序,对相似排序得到的样本构建相似样本集合,获得每个类别的聚类中心和样本距离聚类中心的最小、最大、均值距离,设置3个置信度不同的置信区间.最后使用Jaccard距离对目标样本与测试样本的相似度进行重排序.在标准测试数据集上的实验表明文中算法的有效性. 相似文献
3.
针对行人再识别问题,目前多数方法将行人的局部或全局特征分开考虑,从而忽略了行人整体之间的关系,即行人全局特征和局部特征之间的联系。本文提出一种增强特征融合网络(enhanced feature convergent network,EFCN)。在全局分支中,提出适用于获取全局特征的注意力网络作为嵌入特征,嵌入在基础网络模型中以提取行人的全局特征;在局部分支中,提出循环门单元变换网络(gated recurrent unit change network,GRU-CN)得到代表性的局部特征;再使用特征融合方法将全局特征和局部特征融合成最终的行人特征;最后借助损失函数训练网络。通过大量的对比实验表明,该算法网络模型在标准的Re-ID数据集上可以获得较好的实验结果。提出的增强特征融合网络能提取辨别性较强的行人特征,该模型能够应用于大场景非重叠多摄像机下的行人再识别问题,具有较高的识别能力和识别精度,且对背景变化的行人图像能提取具有较强的鲁棒性特征。 相似文献
4.
5.
针对当前基于距离测度学习的行人再识别算法中因训练样本少而出现的过拟合问题,提出正则化独立测度矩阵的行人再识别算法.该算法首先在4个不同的颜色空间单独学习测度矩阵,然后分别对相应的测度矩阵进行正则化,测试样本通过正则化后的测度矩阵进行相似性度量,最后结合相似性度量结果得到最终相似度.实验表明,相比原有算法,文中算法在性能上有进一步提升,并可改善训练样本少时出现的过拟合问题. 相似文献
6.
行人重识别是一项解决跨场景跨摄像头下的行人识别问题的技术。当障碍物遮挡行人的某些部位时,人物结构的完整性会被破坏,影响识别效果或难于识别。针对行人重识别的遮挡问题,提出了一种新的遮挡行人重识别方法,引入关系感知全局注意力机制,融合全局特征和局部特征来进行行人重识别。识别方法的主要组成部分包括局部分支、全局分支和特征融合分支等。局部分支通过遍历局部特征来增强鲁棒性;全局分支通过利用关系感知全局注意力来挖掘行人显著性的信息;特征融合分支通过自适应地生成特征权重,利用加权求和的方式来融合全局特征和局部特征。实验验证了所提方法的有效性,并且有效提升了行人重识别的效果。 相似文献
8.
基于稳定区域梯度方向直方图的行人检测方法 总被引:1,自引:0,他引:1
针对HOG算法采用简单均匀分布的块提取行人特征,导致过多冗余特征和检测效率较低问题,提出一种启发式的块生成算法.首先将待检测窗口划分成多个大小不一且交叉重叠的块,然后根据各个块的梯度方向直方图特征的稳定性对各个块进行排序,最后选取稳定性最高的多个块作为最终HOG算法的特征提取块.实验结果表明,该算法可取得较好的检测效果,并且检测速度得到了进一步的提高. 相似文献
9.
10.
针对行人目标在不同摄像机下外观显著性变化的问题,提出一种基于特征融合及差异矩阵的行人再识别算法。串联融合显著颜色名描述符(SCNCD)和微调的卷积神经网络(FTCNN)特征来描述行人图像,采用K-means算法获取包含典型行人图像的参考集以优化目标与参考身份相对应的重建关系,运用差异矩阵度量(DMMM)算法进行度量学习。在VIPeR和PRID450s行人再识别数据集上的实验结果表明,所提行人再识别算法具有良好的匹配率和有效性。 相似文献
11.
行人外观属性是区分行人差异的重要语义信息。行人属性识别在智能视频监控中有着至关重要的作用,可以帮助我们对目标行人进行快速的筛选和检索。在行人重识别任务中,可以利用属性信息得到精细的特征表达,从而提升行人重识别的效果。文中尝试将行人属性识别与行人重识别相结合,寻找一种提高行人重识别性能的方法,进而提出了一种基于特征定位与融合的行人重识别框架。首先,利用多任务学习的方法将行人重识别与属性识别结合,通过修改卷积步长和使用双池化来提升网络模型的性能。其次,为了提高属性特征的表达能力,设计了基于注意力机制的平行空间通道注意力模块,它不仅可以在特征图上定位属性的空间位置,而且还可以有效地挖掘与属性关联度较高的通道特征,同时采用多组平行分支结构减小误差,进一步提高网络模型的性能。最后,利用卷积神经网络设计特征融合模块,将属性特征与行人身份特征进行有效融合,以获得更具鲁棒性和表达力的行人特征。实验在两个常用的行人重识别数据集DukeMTMC-reID和Market-1501上进行,结果表明,所提方法在现有的行人重识别方法中处于领先水平。 相似文献
12.
基于模板匹配的人脸检测方法,提出了两种方法来提高人脸目标的检测的精度。一种方法是利用人脸重要特征肤色,建立肤色的HSV颜色直方图模型,通过与目标区域的特征匹配,在视频序列图像中检测和定位人脸;另一种方法是利用了人脸的轮廓信息特征,建立人脸的矩特征,来解决人脸在比例、姿态和形状变化情况下的检测效率低的问题。改进的算法分别通过了人脸尺寸、形状和相似肤色实验验证,实验表明新的人脸检测方法可以有效实现对运动人脸目标的检测。 相似文献
13.
提出一种基于足底压力分布时空HOG的步态识别算法,在特征层对足底压力的时间域和空间域信息进行融合。首先寻找足底总压力时间曲线上的极大值和极小值等几个特征点,利用这几个特征点所对应时刻的足底压力分布来构建时空HOG特征向量,最后采用SVM进行步态识别。采集不同行走速度下30人的单步足底压力分布数据进行实验,在不区分样本速度的情况下,该方法的识别率为93。5%。实验结果表明足底压力分布时空HOG特征能较好地刻画步态动力学特征,且具有良好的速度适应性。 相似文献
14.
针对织物疵点检测问题,提出了一种基于Gabor滤波器和方向梯度直方图(HOG)特征的织物疵点检测算法。首先使用3个尺度、4个方向的Gabor滤波器组对织物图像进行滤波,并做融合处理,增强织物图像疵点区域和背景纹理之间的对比度;然后使用双边滤波减弱图像背景纹理和噪声的影响;最后将图像划分成均匀子块,提取每个子图像块的HOG特征,利用图像疵点区域和背景纹理的HOG特征差异进行阈值分割实现织物疵点的检测。实验选取5种常见织物疵点进行验证,并与传统的Gabor滤波算法进行了实验对比,结果表明该算法可以较好的抑制织物背景纹理的干扰,更加准确的检测出织物疵点。 相似文献
15.
针对图像本身存在噪声和冗余信息而导致分类准确率不高的问题进行了研究,提出一种基于多线索特征融合图像分类算法。通过改进全局显著性和稀有性度量方法得到显著图像;分别在原图像、压缩图像和显著图像上提取方向梯度直方图(Histogram of?Oriented Gradient,HOG)特征;将提取到的特征向量融合;采用基于欧氏距离的二叉树支持向量机(Distance Binary Tree SVM,DBT-SVM)进行图像分类。利用Caltech101和花卉图像数据集进行实验测试,结果表明提出的算法能够有效地提高图像分类的准确率。 相似文献
16.
目前针对中国画的研究主要集中在基于内容的图像分析上,但是对于中国画的分类识别,更重要的是艺术风格而非内容.中国画的本质是笔墨运用,笔道的线条形状和墨色构成是鉴别艺术风格的重要因素.因此,文中提出基于笔墨特征的中国画画家识别算法.首先提取墨线的形状特征和墨色的布局特征,然后综合上述2种特征,作为支持向量机的输入训练得到画作分类器.实验表明,文中算法在平均查全率和查准率上较优,可以用于中国画的数字化分析、理解和识别,为中国画传承和鉴赏提供有效的数字工具. 相似文献
17.
针对特征袋(BOF)模型中存在特征计算耗时、识别精度低的不足,提出一种新的改进BOF模型以提高其目标识别的精度和效率,并将其应用于奶牛个体识别。该算法首先引入优化方向梯度直方图(HOG)特征对图像进行特征提取和描述,然后利用空间金字塔匹配原理(SPM)生成图像基于视觉词典的直方图表示,最后自定义直方图交叉核作为分类器核函数。该算法在项目组自行拍摄的数据集(包含15类奶牛、共7500张奶牛头部图像)上的实验结果表明,使用基于SPM的BOF模型将算法的识别率平均提高2个百分点;使用直方图交叉核相比使用高斯核将算法的识别率平均提高2.5个百分点;使用优化HOG特征,相比使用传统HOG特征将算法识别率平均提高21.3个百分点,运算效率为其1.68倍;相比使用尺度不变特征变换(SIFT)特征,在保证平均识别精度达95.3%的基础上,运算效率为其7.10倍。分析结果可知,该算法在奶牛个体识别领域具有较好的鲁棒性和实用性。 相似文献
18.
19.
唐春晖 《模式识别与人工智能》2015,(1)
目前已有很多关于行人检测方面的研究,这些研究基本建立在行人竖直站立或行走的平视图上,主要应用于视频监控和车载辅助驾驶等领域,但在实际应用中,有时需要从不同的视角检测行人。文中提出一种针对俯视行人检测方法,该方法将俯视行人头部的梯度方向直方图统计信息作为检测目标的特征。通过训练样本提取的特征向量在支持向量机中进行训练得到分类模型参数,然后提取检测样本的特征向量输入分类模型进行判别。与现有行人检测的梯度方向直方图算子相比,文中特征描述算子突出目标的区域与轮廓特征,在目标分块、特征计算和特征统计方法上均有变化。实验证明算法有效且处理速度明显提升。 相似文献
20.
摘要:该研究以蒙古文人名识别为目的,实现了基于条件随机场模型的人名自动识别。首先从蒙古语黏着性特点分析入手,研究了蒙古语语料库中人名的存在形式以及各类人名的特点,针对蒙古语语料库中人名的特点,在词汇特征、词性特征和指示词特征等基本特征基础上引入了汉语姓氏特征、人名词典特征、兼类人名特征以及双词根特征。以内蒙古大学开发的100万词规模的标注语料库为训练数据,该模型的人名识别性能达到了94.56%的准确率,90.60%的召回率和92.54%的F值。该方法比起以往的基于的规则的系统取得了较好的结果。 相似文献