首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 78 毫秒
1.
韩敏  刘闯  邢军 《自动化学报》2014,40(3):431-438
提出一种用于求解多目标优化问题的基于膜系统理论的演化算法. 受膜系统理论的功能和处理化合物方式的启发,设计了求解多目标优化问题的演化操作. 此外,在表层膜中,引入了非支配排序和拥挤距离两种机制改善算法的搜索效率. 采用ZDT(Zitzler-Deb-Thiele)和DTLZ(Deb-Thiele-Laumanns-Zitzler)多目标问题对所提算法进行测试,所提算法求得的候选解既能较好地逼近真实Pareto前沿,又能满足非支配解集多样性的要求. 仿真结果表明,所提方法求解多目标优化问题是可行和有效的.  相似文献   

2.
给出了进化个体之间的关系和非支配集中不同个体之间的相关性质,参考快速排序的思想,提出了一种有效的构造非支配集的算法.在此基础上,将多亲遗传算法与改进的快速排序构造非支配集的算法相结合,提出了一种基于多亲遗传机制的多目标优化算法.最后对提出算法进行了分析,采用了测试函数进行了仿真实验,获得了理想的实验结果.  相似文献   

3.
针对生产过程中生产作业的优化调度问题,以生产质量、效率和成本阈值为约束条件,基于集对分析建立了的生产质量—效率—成本控制的生产作业多目标优化模型;利用快速非支配排序遗传算法(NSGA-Ⅱ)求解优化模型,得到相对确定条件下质量—效率—成本控制的Pareto最优解集。决策者依据实际生产过程需要,为各项生产作业从Pareto最优解集中筛选最合理的调度方案。最后,通过算例仿真验证了结合集对分析与NSGA-Ⅱ的方法解决生产作业多目标优化问题的准确性、有效性和实用性。  相似文献   

4.
在多目标优化问题求解上,粒子群优化算法存在所得最优解集精度不足、分布不够均匀的缺点,针对上述问题,提出了一种多种群分阶段的多目标粒子群优化算法.算法对外部档案个体采取多种算子进行处理以提高解集的收敛精度,引入简化粒子群优化模型使算法更适应多目标优化问题的求解,通过分阶段选取领导个体以及分阶段采取不同策略对非支配解集进行维护以维持解分布均匀性的同时提高收敛速度,重点改善高维多目标优化问题的解集分布均匀性.实验结果表明,改进算法所得的非支配解集具有更好的分布均匀性和收敛精度.  相似文献   

5.
针对麻雀搜索算法在求解多目标问题中的不足,并且在求解过程中易陷入局部最优与收敛性差的问题,提出了一种改进的多目标麻雀搜索算法。首先,引入了新型非支配排序,找到最优前沿面;其次,将多项式变异和正余弦算法融合到种群进化策略中,增强其搜索能力,通过竞争机制的种群选择方法,降低搜索过程中局部最优粒子和全局最优粒子导致的误差;最后,将改进算法与多种多目标算法在标准测试函数上进行对比,仿真结果表明,改进算法的收敛性与搜索能力均优于其他算法。由此说明该算法具有可靠的多目标寻优能力,能够有效解决多目标优化问题。  相似文献   

6.
一种新的多目标改进和声搜索优化算法   总被引:4,自引:1,他引:4       下载免费PDF全文
针对标准和声搜索算法存在收敛不稳定及不能用于多目标优化问题的缺陷,通过引入交叉算子、自适应记忆内搜索概率和调节概率,改进了传统的和声搜索算法;根据Pareto支配关系,结合算法和声记忆库内信息完全共享的特性,提出了基于动态Pareto最优前沿的能够求解多目标优化问题的多目标改进和声搜索算法。通过几个典型函数的仿真测试表明,提出的算法能够高效稳定地收敛于Pareto最优前沿,获得分布均匀的Pareto解集。  相似文献   

7.
在光学寻优算法的基础上提出一种求解多目标优化问题的智能优化算法.此算法以费马原理为依托,利用光的折射与反射定律解决多目标优化问题,并用精确数学语言描述迭代过程中反射的发生机理,延续外部档案的思想,将灰色系统理论引入外部档案,提出一种外部档案维护原则,能有效提高解的均匀性.数值实验部分利用收敛性指标、多样性指标与经典MOPSO、NSGAII进行对比,对比效果较好.本算法为快速高效解决高维多目标优化问题提供新思路.  相似文献   

8.
多目标微粒群优化算法综述   总被引:1,自引:0,他引:1  
作为一种有效的多目标优化工具,微粒群优化(PSO)算法已经得到广泛研究与认可.首先对多目标优化问题进行了形式化描述,介绍了微粒群优化算法与遗传算法的区别,并将多目标微粒群优化算法(MOPSO)分为以下几类:聚集函数法、基于目标函数排序法、子群法、基于Pareto支配算法和其他方法,分析了各类算法的主要思想、特点及其代表性算法.其次,针对非支配解的选择、外部档案集的修剪、解集多样性的保持以及微粒个体历史最优解和群体最优解的选取等热点问题进行了论述,并在此基础上对各类典型算法进行了比较.最后,根据当前MOPSO算法的研究状况,提出了该领域的发展方向.  相似文献   

9.
一种基于快速排序的快速多目标遗传算法   总被引:2,自引:2,他引:2  
多目标遗传算法的一个重要步骤就是构造非支配集,本文提出了一种基于快速排序的非支配集构造方法,提高了非支配集构造效率,并且在Deb提出的NSGAⅡ的基础上,改进了其种群构造策略,设计了一类新的多目标遗传算法。实验表明,这种方法比NSGAⅡ具有更快的收敛速度且保持了良好的分布性。  相似文献   

10.
一种新的求解多目标优化问题的混合遗传算法   总被引:10,自引:0,他引:10  
分析了遗传算法和单纯形算法的特点,充分利用二者的优点,把单纯形算法作为一种局部搜索方法与变权系数遗传算法有机地结合起来,提出了一种求解多目标优化问题的混合遗传算法。数值实验表明该混合遗传算法能求得问题的数量更多、分布更广的Pareto最优解。  相似文献   

11.
为解决基于帕累托(Pareto)支配解排序的多目标进化算法高时间复杂度问题,依据非支配解排序潜在特性,介绍了一种快速的非支配解排序方法,每次只处理当前种群中最高等级个体,且在分配等级的同时,能选择个体进入下一代,下一代被选足时即结束程序,减少了排序处理个体的数量,大幅度降低时间复杂度;另外,给出一种均匀的拥挤距离计算方法;最后,将快速非支配解排序和均匀拥挤距离计算与微分进化算法结合,提出基于非支配解排序的快速多目标微分进化算法(FMODE)。采用标准多目标优化问题ZDTl~ZDT4和ZDT6进行仿真实验:当种群个体较多(大于500)时,FMODE所用时间远小于NSGAⅡ;FMODE的总体性能上均优于经典的NSGAⅡ、SPEAⅡ和DEMO;在FMODE框架内,采用均匀拥挤距离在性能上也明显优于经典拥挤计算方法;并通过实验确定了FMODE算法的参数。实验结果表明FMODE能够减少计算等级时的处理时间,并在收敛性和多样性指标上明显优于对比算法。  相似文献   

12.
基于拥挤距离的动态粒子群多目标优化算法   总被引:1,自引:0,他引:1  
魏武  郭燕 《计算机工程与设计》2011,32(4):1422-1425,1452
提出了一种改进的基于拥挤距离的动态粒子群多目标优化算法。为提高粒子的全局搜索能力,提出了新的动态变化惯性权重和加速因子的方法。引进了拥挤距离排序方法维护外部精英集和更新全局最优值。为保持非劣解的多样性,采用了小概率变异机制,并根据种群的大小选择不同的变异概率。最后,把算法应用到5个典型的多目标测试函数并与其他算法进行比较。实验结果表明,该算法所得的Pareto解集有很好的收敛性和多样性。  相似文献   

13.
为克服传统遗传算法退化和早熟等缺点,同时降低优化算法的复杂度,提出基于人工免疫系统(Artificial Immune System, AIS)实现无约束多目标函数的优化。使用随机权重法和自适应权重法计算种群个体的适应值,使Pareto最优解均匀分布的同时,加快算法的收敛;通过引入人工免疫系统的三个基本算子:克隆、超变异和消亡,保持种群的多样性;在进化种群外设立Pareto 解集,保存历代的近似最优解。使用了两个典型的多目标检测函数验证了该算法的有效性。优化结果表明,基于AIS的多目标优化算法可使进化种群迅速收敛到Pareto前沿,并能均匀分布,是实现多目标函数优化的有效方法。  相似文献   

14.
李贞  郑向伟  张辉 《计算机应用》2017,37(3):755-759
在虚拟网络映射中,多数研究只考虑一个映射目标,不能体现多方的利益。为此,将多目标算法和粒子群算法结合,提出了一种基于多目标粒子群优化(PSO)的虚拟网络映射算法(VNE-MOPSO)。首先,在基本的粒子群算法中引入交叉算子,扩大了种群优化的搜索空间;其次,在多目标优化算法中引入非支配排序、拥挤距离排序,从而加快种群的收敛;最后,以同时最小化成本和节点负载均衡度为虚拟网络映射目标函数,采用多目标粒子群优化算法求解虚拟网络映射问题(VNMP)。实验结果表明,采用该算法求解虚拟网络映射问题,在网络请求接受率、平均成本、平均节点负载均衡度、基础设施提供商的收益等方面具有优势。  相似文献   

15.
借鉴遗传算法中采用并行机制避免局部收敛的思想,提出了一种基于多种群的多目标免疫算法。在该算法中建立多个子种群分别进行免疫操作,子种群之间通过优秀个体转移进行信息交换,可有效地提高种群的多样性,加速收敛。采用几种典型的多目标优化函数进行实验,并同常用的多目标遗传算法NSGA-II进行比较,仿真结果表明了该算法能有效解决多目标优化问题且具有一定的优越性。  相似文献   

16.
对于多目标电网优化规划问题,建立以经济性和可靠性为目标的电网规划模型,通过二进制编码的量子粒子群算法进行优化。为了提高最优解的多样性和分布性,采用拥挤距离排序的方法对外部存储器中的最优解进行更新和维护,使得算法找到尽可能多的Pareto最优解。仿真结果显示,基于拥挤距离排序的二进制量子粒子群算法比其他智能算法寻得的最优解有更好的分布性和收敛性。  相似文献   

17.
基于一种新模型的多目标遗传算法及性能分析   总被引:2,自引:0,他引:2  
在多目标优化中,各目标通常相互冲突,其最优解往往有无穷多个,如何在最优解集中求出一组分布均匀且数量多的Pareto最优解供决策者选择十分重要.本文给出了多目标优化的一种新解法.首先定义了种群序值的理想方差和种群密度的方差,然后把目标个数任意的多目标函数优化问题Ⅰ转化成了用种群序值的理想方差和种群密度的方差构成的两个目标函数的优化问题Ⅱ,并对转化后的优化问题Ⅱ提出了一种新的多目标遗传算法(RDMOEA).计算机仿真表明RDMOEA算法对不同的实验函数均可求出在最优解集合中分布均匀且数量充足的Pareto最优解.  相似文献   

18.
通过在目标空间中利用目标本身信息估算个体k最近邻距离之和,作为个体的密度信息,根据个体的密度信息对群体中过剩的非劣解进行逐个去除,以便更好地维护解的多样性,由此给出了一种基于个体密度估算的多目标优化演化算法IDEMOEA。用这个算法对几个典型的多目标优化函数进行测试。测试结果表明,算法IDEMOEA求解多目标优化问题是行之有效的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号