共查询到20条相似文献,搜索用时 15 毫秒
1.
目的 模型异构联邦学习由于允许参与者在不损害隐私的情况下独立设计其独特模型而受到越来越多的关注。现有的方法通常依赖于公共共享的相关数据或全局模型进行通信,极大地限制了适用性。且每个参与者的私有数据通常以不同的分布收集,导致数据异构问题。为了同时处理模型异构和数据异构,本文提出了一种新颖的自适应异构联邦学习方法。方法 给定一个随机生成的输入信号(例如,随机噪声),自适应异构联邦学习直接通过对齐输出逻辑层分布来实现异构模型之间的通信,实现协作知识共享。主要优势是在不依赖额外相关数据收集或共享模型设计的情况下解决了模型异构问题。为了进一步解决数据异构问题,本文提出了在模型和样本层面上进行自适应权重更新。因此,自适应异构联邦学习(adaptive heteogeneous federated learning,AHF)允许参与者通过模型输出在无关数据上的差异和强调“有意义”的样本来学习丰富多样的知识。结果 通过在不同的联邦学习任务上使用随机噪声输入进行通信,进行了广泛的实验,显示出比竞争方法更高的域内精确度和更好的跨域泛化性能。结论 本文方法提供了一个简单而有效的基准,为异构联邦学习的未来发展奠定基础。 相似文献
2.
随着科技的迅猛发展,具有计算和存储能力的边缘设备数量不断增加,产生的数据流量更是呈指数式增长,这使得以云计算为核心的集中式处理模式难以高效处理边缘设备产生的数据.另外,由于边缘网络设备的多样性以及数据表示手段的不断丰富,多模态数据广泛存在.为充分利用边缘设备上的异构数据,解决边缘计算中由于数据隐私引起的“数据通信壁垒”问题,提出了一种联邦学习中基于Tucker分解的多源异构数据融合算法.该算法针对异构数据在无交互条件下的融合问题,引入张量Tucker分解理论,通过构建一个具有异构空间维度特性的高阶张量以捕捉异构数据的高维特征,从而实现联邦学习中多源异构数据的融合.最后,在MOSI数据集上验证了算法的有效性. 相似文献
3.
联邦学习网络中,全局模型的聚合训练常因边缘设备端的统计异构性而存在收敛问题。针对高度异构环境的适应性问题,提出一种面向异构网络的联邦优化算法q-FedDANE。首先,通过在经典联合近似牛顿型方法中引入衰减参数q,调整衰减梯度校正项和近端项的负面影响,有效提高模型对环境异构性的感知能力,并将每轮算法迭代的设备通信轮次降低至一次,显著减少通信成本和训练开销;其次,模型将随机优化器Adam引入服务器端聚合训练,通过自适应的动态学习率来利用全局信息进行目标优化,加快了模型的收敛速度。实验表明,q-FedDANE算法可以更好地适应环境异构和低设备参与的场景,在高度异构的FEMNIST数据集上,该算法最终获得的测试精度约高出FedDANE的58%。 相似文献
4.
联邦学习是一种不通过中心化的数据训练就能获得机器学习模型的系统,源数据不出本地,降低了隐私泄露的风险,同时本地也获得优化训练模型。但是由于各节点之间的身份、行为、环境等不同,导致不平衡的数据分布可能引起模型在不同设备上的表现出现较大偏差,从而形成数据异构问题。针对上述问题,提出了基于节点优化的数据共享模型参数聚类算法,将聚类和数据共享同时应用到联邦学习系统中,该方法既能够有效地减少数据异构对联邦学习的影响,也加快了本地模型收敛的速度。同时,设计了一种评估全局共享模型收敛程度的方法,用于判断节点聚类的时机。最后,采用数据集EMNIST、CIFAR-10进行了实验和性能分析,验证了共享比例大小对各个节点收敛速度、准确率的影响,并进一步分析了当聚类与数据共享同时应用到联邦学习前后各个节点的准确率。实验结果表明,当引入数据共享后各节点的收敛速度以及准确率都有所提升,而当聚类与数据共享同时引入到联邦学习训练后,与FedAvg算法对比,其准确度提高10%~15%,表明了该方法针对联邦学习数据异构问题上有着良好的效果。 相似文献
5.
边缘计算(Edge Computing)作为一种新的计算范式,在网络边缘提供计算服务,相比传统的云计算模式,它具有高可信、低延迟等特点,在各行各业中有着广阔的应用前景,但在隐私保护和数据处理上仍存在一些问题。而联邦学习作为一种分布式的机器学习技术,能很好地解决边缘计算场景下数据分布不一致和数据隐私问题,但仍面临设备异构、数据异质及通信方面的挑战,如模型偏移、收敛效果差、部分设备计算结果丢失等问题。为解决上述问题,提出动态权重的联邦学习优化算法(FedDw)。该算法关注设备的服务质量,减少训练速度不一致导致部分设备参与带来的异构性影响,并根据服务质量确定在最终模型聚合时的占比,从而确保聚合的结果在复杂的真实情况下更具有鲁棒性。在10个地区气象站的真实数据集上与FedProx和Scaffold这两种典型的联邦学习算法进行了对比,实验结果表明FedDw算法具有更好的综合性能。 相似文献
6.
联邦学习(federated learning)通过用上传模型参数的方式取代了数据传输,降低了隐私泄露的风险.然而,将联邦学习应用到云边端框架下时,一方面,由于云边端存在边缘和终端两层分布式框架,对传统的单层联邦学习提出挑战;另一方面,终端节点因资源异构难以训练相同复杂度的模型,无法满足联邦学习客户端统一模型的假设.针对上述第1个问题,从传统的单层联邦学习方法出发,设计了面向云边端分层部署模型的联邦学习方案;针对第2个问题,通过在终端模型插入分支的方式,将大模型拆分为不同复杂度的小模型适配不同客户端资源状态,从而实现异构联邦学习.同时,考虑到终端存在大量无标签数据无法进行有效模型训练的问题,还提出了针对联邦框架的半监督学习方法,实现对无标签数据的有效利用.最终,通过MNIST和FashionMNIST数据集对方法进行了验证.实验结果表明,在有效避免隐私泄露的前提下,相比于其他同构和异构学习方法,所提方法最大可提升22%的模型准确率;在计算、通信、存储等资源开销上均有明显降低. 相似文献
7.
联邦学习能够在不泄露数据隐私的情况下合作训练全局模型,但这种协作式的训练方式在现实环境下面临参与方数据非独立同分布(Non-IID)的挑战:模型收敛慢、精度降低的问题。许多现有的联邦学习方法仅从全局模型聚合和本地客户端更新中的一个角度进行改进,难免会引发另一角度带来的影响,降低全局模型的质量。提出一种分层持续学习的联邦学习优化方法(FedMas)。FedMas基于分层融合的思想,首先,采用客户端分层策略,利用DBSCAN算法将相似数据分布的客户端划分到不同的层中,每次仅挑选某个层的部分客户端进行训练,避免服务器端全局模型聚合时因数据分布不同产生的权重分歧现象;进一步,由于每个层的数据分布不同,客户端在局部更新时结合持续学习灾难性遗忘的解决方案,有效地融合不同层客户端数据间的差异性,从而保证全局模型的性能。在MNIST和CIFAR-10标准数据集上的实验结果表明,FedMas与FedProx、Scaffold和FedCurv联邦学习算法相比,全局模型测试准确率平均提高0.3~2.2个百分点。 相似文献
8.
边缘计算(Edge Computing)是一种新的计算方式,通过在网络边缘提供计算服务,与传统的云计算模式相比,具有高可信度和低延迟等特点。联邦学习(FL)作为一种分布式机器学习方法,尽管具备保护隐私和数据安全的特性,却仍然面临设备异构和数据不均衡等问题,导致出现部分参与者(边缘端)训练时间长、训练效率低下等问题。为了解决上述问题,该文提出了一种名为FlexFL的动态联邦学习优化算法。该算法引入了两层联邦学习策略,通过在同一参与者部署多个联邦学习训练服务和一个联邦学习聚合服务,将本地数据集平均分配给各个联邦学习训练服务,并每回合激活一定数量的训练服务。未激活的服务将休眠,不占用计算资源,并将资源平均分配给激活的服务,以加快训练速度。该算法能够平衡参与者设备异构和数据不均衡性带来的训练时间差异,从而提高整体训练效率。在MINST数据集和CIFAR数据集上与FedAvg联邦学习算法进行了对比实验,结果显示,FlexFL算法在减少时间消耗的同时,不降低模型性能。 相似文献
9.
随着移动设备自身存储和计算能力的提升,越来越多移动设备在本地进行数据处理,如传感器,智能穿戴设备和车载应用等。当前机器学习技术在计算机视觉,自然语言处理,模式识别等领域取得了巨大成功,然而当前机器学习方法是中心化的,数据中心或者云服务器能够对数据进行访问。联邦学习作为新型的分布式机器学习范式,借助设备本身的存储和计算能力,能够在数据不出本地的情况下进行机器学习中的模型共建,从而保护数据隐私,从而有效解决数据孤岛问题。边缘计算能够在靠近设备端提供计算,存储和网络资源,为高带宽低时延的应用提供基础。在联邦学习训练中,设备数量增加,设备网络情况复杂多变等均为联邦学习中的联合训练上带来了巨大挑战,如设备选择,网络通信开销大等状况。本文首先介绍了边缘计算的基础,以及联邦学习的联合训练流程,通过对联邦学习和边缘计算的融合应用进行分析研究,进一步我们对基于边缘计算的联邦学习做了分析,最后我们对当前的主要挑战以及未来的研究方向做了总结。 相似文献
10.
11.
联邦学习(federated learning)将模型训练任务部署在移动边缘设备,参与者只需将训练后的本地模型发送到服务器参与全局聚合而无须发送原始数据,提高了数据隐私性.然而,解决效率问题是联邦学习落地的关键.影响效率的主要因素包括设备与服务器之间的通信消耗、模型收敛速率以及移动边缘网络中存在的安全与隐私风险.在充分调研后,首先将联邦学习的效率优化归纳为通信、训练与安全隐私保护3类.具体来说,从边缘协调与模型压缩的角度讨论分析了通信优化方案;从设备选择、资源协调、聚合控制与数据优化4个方面讨论分析了训练优化方案;从安全与隐私的角度讨论分析了联邦学习的保护机制.其次,通过对比相关技术的创新点与贡献,总结了现有方案的优点与不足,探讨了联邦学习所面临的新挑战.最后,基于边缘计算的思想提出了边缘化的联邦学习解决方案,在数据优化、自适应学习、激励机制和隐私保护等方面给出了创新理念与未来展望. 相似文献
12.
13.
与传统机器学习相比,联邦学习有效解决了用户数据隐私和安全保护等问题,但是海量节点与云服务器间进行大量模型交换,会产生较高的通信成本,因此基于云-边-端的分层联邦学习受到了越来越多的重视。在分层联邦学习中,移动节点之间可采用D2D、机会通信等方式进行模型协作训练,边缘服务器执行局部模型聚合,云服务器执行全局模型聚合。为了提升模型的收敛速率,研究人员对面向分层联邦学习的网络传输优化技术展开了研究。文中介绍了分层联邦学习的概念及算法原理,总结了引起网络通信开销的关键挑战,归纳分析了选择合适节点、增强本地计算、减少本地模型更新上传数、压缩模型更新、分散训练和面向参数聚合传输这6种网络传输优化方法。最后,总结并探讨了未来的研究方向。 相似文献
14.
联邦学习能够在边缘设备的协作训练中,保护边缘设备的数据隐私。而在通用联邦学习场景中,联邦学习的参与者通常由异构边缘设备构成,其中资源受限的设备会占用更长的时间,导致联邦学习系统的训练速度下降。现有方案或忽略掉队者,或根据分布式思想将计算任务进行分发,但是分发过程中涉及到原始数据的传递,无法保证数据隐私。为了缓解中小型规模的多异构设备协作训练场景下的掉队者问题,提出了编码联邦学习方案,结合线性编码的数学特性设计了高效调度算法,在确保数据隐私的同时,加速异构系统中联邦学习系统速度。同时,在实际实验平台中完成的实验结果表明,当异构设备之间性能差异较大时,编码联邦学习方案能将掉队者训练时间缩短92.85%。 相似文献
15.
物联网多样性终端设备在计算、存储、通信方面的异构性导致联邦学习效率不足。针对上述联邦训练过程中面临的问题,基于代理选举思路,提出了一种高效联邦学习算法。设计了基于马氏距离的代理节点选举策略,将设备的计算能力与闲置时长作为选举因素,选举性价比高的设备作为代理节点,充分发挥设备计算能力。进一步设计了基于代理节点的新型云边端联邦学习架构,提升了异构设备之间的联邦学习效率。基于MNIST和CIFAR-10公开数据集与智能家居设备真实数据的实验表明,该联邦学习方法的效率提高了22%。 相似文献
16.
随着物联网和移动设备性能的不断提高,一种新型计算架构——边缘计算——应运而生.边缘计算的出现改变了数据需要集中上传到云端进行处理的局面,最大化利用边缘物联网设备的计算和存储能力.边缘计算节点对本地数据进行处理,不再需要把大量的本地数据上传到云端进行处理,减少了数据传输的延时.在边缘网络设备上进行人工智能运算的需求也在逐日增大,因为联邦学习机制不需要把数据集中后进行模型训练,所以更适合于节点平均数据量有限的边缘网络机器学习的场景.针对以上挑战,提出了一种面向边缘网络计算的高效异步联邦学习机制(efficient asynchronous federated learning mechanism for edge network computing, EAFLM),根据自适应的阈值对训练过程中节点与参数服务器之间的冗余通信进行压缩.其中,双重权重修正的梯度更新算法,允许节点在学习的任何过程中加入或退出联邦学习.实验显示提出的方法将梯度通信压缩至原通信次数的8.77%时,准确率仅降低0.03%. 相似文献
17.
联邦学习(federated learning, FL)是一种以保护客户隐私数据为中心的分布式处理网络,为解决隐私泄露问题提供了前景良好的解决方案.然而, FL的一个主要困境是高度非独立同分布(nonindependent and identically distributed, non-IID)的数据会导致全局模型性能很差.尽管相关研究已经探讨了这个问题,但本文发现当面对non-IID数据、不稳定的客户端参与以及深度模型时,现有方案和标准基线FedAvg相比,只有微弱的优势或甚至更差,因此严重阻碍了FL的隐私保护应用价值.为解决这个问题,本文提出了一种对non-IID数据鲁棒的优化方案:FedUp.该方案在保留FL隐私保护特点的前提下,进一步提升了全局模型的泛化鲁棒性. FedUp的核心思路是最小化全局经验损失函数的上限来保证模型具有低的泛化误差.大量仿真实验表明, FedUp显著优于现有方案,并对高度non-IID数据以及不稳定和大规模客户端的参与具有鲁棒性. 相似文献
18.
联邦学习是一种能够保护数据隐私的机器学习设置,然而高昂的通信成本和客户端的异质性问题阻碍了联邦学习的规模化落地。针对这两个问题,提出一种面向通信成本优化的联邦学习算法。首先,服务器接收来自客户端的生成模型并生成模拟数据;然后,服务器利用模拟数据训练全局模型并将其发送给客户端,客户端利用全局模型进行微调后得到最终模型。所提算法仅需要客户端与服务器之间的一轮通信,并且利用微调客户端模型来解决客户端异质性问题。在客户端数量为20个时,在MNIST和CIFAR-10这两个数据集上进行了实验。结果表明,所提算法能够在保证准确率的前提下,在MNIST数据集上将通信的数据量减少至联邦平均(FedAvg)算法的1/10,在CIFAR-10数据集上将通信数据量减少至FedAvg算法的1/100。 相似文献
19.
20.
考虑移动边缘计算下的联邦学习,其中全局服务器通过网络连接大量移动设备共同训练深度神经网络模型.全局类别不平衡和设备本地类别不平衡的数据分布往往会导致标准联邦平均算法性能下降.提出了一种基于组合式多臂老虎机在线学习算法框架的设备选择算法,并设计了一种类别估计方案.通过每一轮通信中选取与前次全局模型的类别测试性能偏移最互补的设备子集,使得训练后线性组合的全局模型各类别测试性能更平衡,从而获得更快的收敛性、更稳定的训练过程以及更好的测试性能.数值实验充分探究了不同参数对基于类别不平衡联邦平均算法的影响,以及验证了所提设备选择算法的有效性. 相似文献