共查询到20条相似文献,搜索用时 31 毫秒
1.
针对人工排矸法、机械湿选法、γ射线分选法等传统煤矸石分选方法无法兼顾快速高效性、安全无害性、简单操作性的问题,提出了基于机器视觉的煤矸石图像分类方法。对煤矸石图像进行增强、平滑去噪等预处理,采用基于距离变换的分水岭算法实现煤矸石图像分割提取。针对煤矸石分割图像,选取煤矸石图像的HOG特征及灰度共生矩阵,分别以支持向量机、随机森林、K近邻算法作为分类器进行基于特征提取的煤矸石分类识别;分别建立浅层卷积神经网络和基于ImageNet数据集预训练的VGG16网络,进行基于卷积神经网络的煤矸石分类识别。研究结果表明,基于VGG16网络的煤矸石图像分类方法准确率最高为99.7%,高于基于特征提取方法的91.9%和基于浅层卷积神经网络方法的92.5%。 相似文献
2.
细粒度图像分类问题是计算机视觉领域一项极具挑战的研究课题,其目标是对子类进行识别,如区分不同种类的鸟.由于子类别间细微的类间差异和较大的类内差异,传统的分类算法不得不依赖于大量的人工标注信息.近年来,随着深度学习的发展,深度卷积神经网络为细粒度图像分类带来了新的机遇.大量基于深度卷积特征算法的提出,促进了该领域的快速发展.本文首先从该问题的定义以及研究意义出发,介绍了细粒度图像分类算法的发展现状.之后,从强监督与弱监督两个角度对比分析了不同算法之间的差异,并比较了这些算法在常用数据集上的性能表现.最后,我们对这些算法进行了总结,并讨论了该领域未来可能的研究方向及其面临的挑战. 相似文献
3.
一般细粒度图像分类只关注图像局部视觉信息,但在一些问题中图像局部的文本 信息对图像分类结果有直接帮助,通过提取图像文本语义信息可以进一步提升图像细分类效果。 我们综合考虑了图像视觉信息与图像局部文本信息,提出一个端到端的分类模型来解决细粒度 图像分类问题。一方面使用深度卷积神经网络获取图像视觉特征,另一方面依据提出的端到端 文本识别网络,提取图像的文本信息,再通过相关性计算模块合并视觉特征与文本特征,送入 分类网络。最终在公共数据集 Con-Text 上测试该方法在图像细分类中的结果,同时也在 SVT 数据集上验证端到端文本识别网络的能力,均较之前方法获得更好的效果。 相似文献
4.
最近五年,卷积神经网络(CNN)得到了充分的发展,在图像分类领域,基于监督学习的算法在相关任务中取得了巨大的成功.但是与分类极为准确地粗粒度标签数据集相比,细粒度标签数据集的分类依旧是一个难点.地理图像被广泛应用于社会的各个方面,研究者往往需要对大规模的地理图像数据进行分类,但是由于地理图像的特征差异较小,因此自动化分... 相似文献
5.
6.
7.
细粒度图像具有类内方差大、类间方差小的特点,致使细粒度图像分类(FGIC)的难度远高于传统的图像分类任务。介绍了FGIC的应用场景、任务难点、算法发展历程和相关的常用数据集,主要概述相关算法:基于局部检测的分类方法通常采用连接、求和及池化等操作,模型训练较为复杂,在实际应用中存在较多局限;基于线性特征的分类方法模仿人类视觉的两个神经通路分别进行识别和定位,分类效果相对较优;基于注意力机制的分类方法模拟人类观察外界事物的机制,先扫描全景,后锁定重点关注区域并形成注意力焦点,分类效果有进一步的提高。最后针对目前研究的不足,展望FGIC下一步的研究方向。 相似文献
8.
9.
10.
11.
基于卷积神经网络的植物图像分类方法研究 总被引:1,自引:0,他引:1
近年来,卷积神经网络已经成为图像分类领域的应用研究热点,其对图像特征进行自提取、自学习,解决了以往图像分类方法的图像低层特征到高层概念之间存在的语义鸿沟。为了解决植物图像的自动分类问题,该文提出一种基于卷积神经网络(CNN)的植物图像分类方法,以植物图像为研究对象,将经典卷积神经网络VGG16与全卷积网络(FCN)相结合,把VGG16中两个通道数为4096的全连接层改为卷积层,构造一个新的VGG16模型为植物图像分类模型。文中制作了一个由43类每类500张总共21500张植物图像组成的图像数据集,作为植物图像分类模型的训练数据集。实验结果表明,所提方法在植物的图像分类上的准确率达到97.23%。应用文中提出的卷积神经网络对植物图像进行分类可以取得目前最好的植物图像分类效果。 相似文献
12.
湍流图像的复原一直是退化图像领域的研究热点,但依据湍流干扰强度对图像进行分类研究相对较少.不同场景的高空航拍图像进行大气湍流处理.调整湍流退化强度值,生成2000张对应的湍流干扰图像,再对这些图像进行预处理后送入卷积神经网络中进行湍流退化强度分类,最后通过优化搭建的卷积神经网络模型的激活函数以及对学习率的调整进一步提升分类准确率.实验表明,卷积神经网络对不同干扰强度的湍流退化图像分类准确率达到80%左右,结果表明该方法对大气湍流退化图像的复原具有一定指导意义. 相似文献
13.
遥感图像分类是模式识别技术在遥感领域的具体应用,针对遥感图像处理中的分类问题,提出了一种基于卷积神经网络(convolutional neural networks,CNN)的遥感图像分类方法,并针对单源特征无法提供有效信息的问题,设计了一种多源多特征融合的方法,将遥感图像的光谱特征、纹理特征、空间结构特征等按空间维度以向量或矩阵的形式进行有效融合,以此训练CNN模型。实验表明,多源多特征相融合能够加快模型收敛速度,有效提高遥感图像的分类精度;与其他分类方法相比,CNN能够取得更高的分类精度,获得更优的分类效果。 相似文献
14.
为解决目前ViT模型无法改变输入补丁大小且输入补丁都是单一尺度信息的缺点,提出了一种基于Transformer的图像分类网络MultiFormer。MultiFormer通过AWS(attention with scale)模块,将每阶段不同尺度输入小补丁嵌入为具有丰富语义信息的大补丁;通过GLA-P(global-local attention with patch)模块交替捕获局部和全局注意力,在嵌入时同时保留了细粒度和粗粒度特征。设计了MultiFormer-tiny、-small和-base三种不同变体的MultiFormer模型网络,在ImageNet图像分类实验中top-1精度分别达到81.1%、82.2%和83.2%,后两个模型对比同体量的卷积神经网络ResNet-50和ResNet-101提升了3.1%和3.4%;对比同样基于Transformer分类模型ViT,MultiFormer-base在参数和计算量远小于ViT-Base/16模型且无须大量数据预训练前提下提升2.1%。 相似文献
15.
图像分类是根据图像的信息将不同类别的图像区分开来,是计算机视觉中重要的基本问题,也是图像检测、图像分割、物体跟踪、行为分析等其他高层视觉任务的基础。深度学习是机器学习研究中的一个新的领域,其动机在于建立、模拟人脑进行分析学习的神经网络,它模仿人脑的机制来解释数据,例如图像、声音和文本。该系统基于Caffe深度学习框架,首先对数据集进行训练分析构建深度学习网络,提取数据集图像特征信息,得到数据对应的分类模型,然后以bvlc-imagenet训练集模型为基础,对目标图像进行扩展应用,实现"以图搜图"Web应用。 相似文献
16.
针对传统图像分类方法分类精度不高的问题,文章采用了两层卷积和池化的卷积神经网络(Convolutional Neural Network,CNN)算法来对图像进行分类.从不同方面将CNN与支持向量机(Support Vector Machines,SVM)、反向传播算法(Back Propagation,BP)进行图像... 相似文献
17.
随着我国航空紧固件制造业的高速发展,生产车间流水线上的紧固件制造工艺变得越来越复杂.目前,生产流水线上工段内中不同规格产品的流转停留在人工分类阶段,这种做法不仅耗费人力,还很难满足实时处理分类需求.文中提出一种基于图像分类算法的航空紧固件自动分类方法,设计了一套紧固件图像采集和自动分类实施方案,并根据真实工业数据执行评... 相似文献
18.
垃圾分类作为资源回收利用的重要环节之一,可以有效地提高资源回收利用效率,进一步减轻环境污染带来的危害.随着现代工业逐步智能化,传统的图像分类算法已经不能满足垃圾分拣设备的要求.本文提出一种基于卷积神经网络的垃圾图像分类模型(Garbage Classification Network, GCNet).通过构建注意力机制,模型完成局部和全局的特征提取,能够获取到更加完善、有效的特征信息;同时,通过特征融合机制,将不同层级、尺寸的特征进行融合,更加有效地利用特征,避免梯度消失现象.实验结果证明, GCNet在相关垃圾分类数据集上取得了优异的结果,能够有效地提高垃圾识别精度. 相似文献
19.
针对卷积神经网络在嵌入式系统需要耗费大量计算资源、计算复杂度高等问题,提出一种基于ZYNQ系列FPGA的加速方法。通过HLS工具对卷积神经网络加速器进行设计,提出相邻层位宽合并和权重参数重排序的策略实现数据传输的优化,利用卷积分解、并行展开充分发挥FPGA并行计算的优势。为验证卷积神经网络加速器的加速效果,将YOLO目标检测模型进行部署。实验结果表明,在PYNQ-Z2上达到了39.39GOP/s的计算性能,是intel i5-2400 CPU的3.4倍,是ARM-Cortex A9 CPU的147.5倍。在相同FPGA平台上与之前的工作相较也有更高的性能。 相似文献
20.
为解决深层卷积神经网络(Deep convolutional neural network, DCNN)模型在算力弱、存储成本高的AI边缘计算设备上难以高效应用的现实问题,本文利用重量级网络辅助训练轻量级网络,设计了一种基于轻量级神经网络的花卉图像分类系统。首先利用重量级DCNN并结合迁移学习、爬虫技术与最大连通区域分割方法,构建了适用于轻量级网络训练的扩充花卉数据集。然后基于Tiny-darknet与Darknet-reference两种网络及扩充后的花卉数据集训练得到两种面向弱算力设备的轻量级DCNN模型。训练得到的两种花卉分类网络在Oxford102花卉数据集上的平均分类准确率可达98.07%与98.83%,模型大小分别为4 MB与28 MB,在AI边缘计算设备中具有较好的应用前景。 相似文献