首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
本研究采用真空热压烧结技术,在1600℃下制备了WC-TiC-TaC硬质合金材料,研究了TiC含量对其微观组织及力学性能的影响。结果表明,随着TiC含量的增多,硬质合金材料的晶粒显著增大。当TiC的含量从10wt%增加到25wt%时,硬质合金材料的硬度逐渐增大,最高可达19.81 GPa,这是由于TiC的硬度高于基体WC的硬度;与此同时,硬质合金材料的抗弯强度和断裂韧度逐渐减小。当TiC的含量为10wt%时,材料的抗弯强度有最大值,其值为1147.24 MPa,这是由于在材料内部形成了均匀、细小的晶粒组织;在此含量下,复合材料的增韧机理为细晶增韧、裂纹偏转、裂纹分支、裂纹桥接和韧窝增韧,其断裂韧度有最大值,为14.60 MPa·m~(1/2)。  相似文献   

2.
采用真空热压烧结技术,在1 500℃下制备了不同TiC含量的连续碳纤维编织物增韧的WC/TiC层状陶瓷刀具样品。研究了TiC的含量对连续碳纤维编织物增韧的WC/TiC层状陶瓷刀具材料微观组织和力学性能的影响,结果表明,随着TiC含量的增加,陶瓷刀具材料的抗弯强度、断裂韧度和硬度不断减小;当TiC含量为20%(质量分数)时,材料的致密度较高,晶粒尺寸较小,因此力学性能较好;此时,抗弯强度为516.896 MPa,断裂韧度为8.3871 MPa·m~(1/2),硬度为17.341GPa。  相似文献   

3.
TiB2-TiN复合陶瓷刀具材料的显微结构和力学性能研究   总被引:1,自引:0,他引:1  
热压烧结制备了不同TiN含量的复合陶瓷刀具材料TiB2-TiN-(Ni, Mo),对其性能测试表明,随着TiN含量的增加,材料的抗弯强度和断裂韧度逐渐提高,但是材料的硬度在TiN的含量达到40%(体积分数)时却大幅度降低.利用X衍射(XRD)、扫描电镜(SEM)和能谱(EDAX)分析了复合材料的物相和显微组织,结果表明,烧结过程中生成了MoNi相;随TiN含量增加,材料从以沿晶断裂为主转变为同时有沿晶断裂和穿晶断裂的断裂模式;裂纹扩展过程中有金属颗粒桥连现象.分析认为,材料的主要增韧机制是延性相颗粒桥连和裂纹偏转.  相似文献   

4.
采用机械合金化后注射成形制备10%(体积分数,下同)Cu/Al_2O_3复合材料,研究机械合金化时间、烧结温度对复合材料显微组织和性能的影响,并分析复合材料的增韧机理。结果表明:通过机械合金化10h后注射成形、脱脂、1550℃烧结工艺制备的10%Cu/Al_2O_3复合材料具有良好的抗弯强度和断裂韧度,分别为532MPa和4.97MPa·m1/2;烧结温度低于1550℃导致原子在固态下扩散能力不足,烧结温度高于1550℃则使颗粒边界移动速率大于孔隙逸出速率,二者都造成复合材料孔隙率增加,而导致材料的强度和韧度下降;机械合金化时间延长使复合材料晶粒细化、Cu与Al_2O_3之间的结合强度提高,材料强度和硬度提高,但断裂韧度下降;Cu粉末弥散分布于Al_2O_3基体中,抑制烧结过程中Al_2O_3晶粒粗化,且使裂纹在扩展过程中遇到延性的Cu产生裂纹桥联和偏转,提高材料的韧度。  相似文献   

5.
采用高能球磨和热压烧结的方法成功制备了纳米TiC颗粒弥散增强超细晶W基复合材料,并对其组织结构、室温力学性能进行了研究.研究结果表明,当纳米TiC颗粒含量较小时,高能球磨可以使TiC颗粒均匀分散到W基体中,烧结后,TiC颗粒尺寸约100nm,当纳米TiC颗粒含量较高时,局部出现团聚现象;纳米TiC的加入强烈的阻碍了W晶粒的长大并使复合材料的断裂模式由沿晶断裂为主向穿晶断裂为主转变,提高了材料的力学性能;在TiC含量为1%(质量分数,下同)时,材料的致密度、维氏显微硬度、弹性模量、抗弯强度分别达到98.4%、4.33、396GPa、1065MPa.纳米TiC颗粒对复合材料的强化机制主要是细晶强化和晶界强化.  相似文献   

6.
以石墨烯纳米片作为增强相,采用热压烧结工艺制备石墨烯纳米片增韧Al_2O_3基纳米复合陶瓷刀具材料。进行石墨烯纳米片分散实验,研究石墨烯纳米片添加量对刀具材料断裂韧度、抗弯强度和硬度的影响,观察其微观结构和形貌。结果表明:聚乙烯吡咯烷酮(PVP)为石墨烯纳米片的优选分散剂,当PVP添加量为石墨烯纳米片质量的60%时,分散效果最佳;当石墨烯纳米片添加量为0.75%(体积分数)时,刀具材料的断裂韧度和抗弯强度分别达到7.1MPa·m1/2和663MPa,与未添加石墨烯纳米片的组分相比分别提高了31%和15%;石墨烯纳米片呈卷曲状结构弥散分布于基体材料中,其增韧机理为石墨烯纳米片拉断、拔出和裂纹偏转。与未添加石墨烯的刀具相比,添加石墨烯纳米片的刀具的主切削力、切削温度和前刀面摩擦因数明显降低,表现出良好的减摩、耐磨性。  相似文献   

7.
以WC粉为基体,Co为粘结相,TiC颗粒为抑制剂,通过球磨、压制成型,微波烧结制备WC-TiC-Co硬质合金.结果表明,在1360℃微波烧结为液相烧结,Co与WC会发生反应生成η相(Co3W3C).随TiC含量升高,合金的晶粒逐渐变得均匀细小,合金的相对密度、硬度和抗弯强度均先升高后下降,硬度在0.5%TiC时达到最高值,相对密度和抗弯强度在1.0%TiC时达到最高值.  相似文献   

8.
以TiCp粉末和水雾化Cr15高铬铸铁粉末为原料,采用粉末冶金液相烧结技术制备TiCp增强高铬铸铁复合材料。研究了TiCp含量对高铬铸铁的物相组成、显微组织和力学性能的影响。研究结果表明,全致密的TiCp增强高铬铸铁基体复合材料的构成相为TiC、M7C3型碳化物、马氏体和少量奥氏体;随着TiCp添加量增大,金属基体逐步呈孤岛状,并在其中析出越来越多的M7C3型碳化物,同时TiCp逐步呈连续网状分布;同时,其硬度稳步提升,而抗弯强度和冲击韧性降低。当TiCp添加量为20wt%时烧结态复合材料具有最佳综合力学性能。此时硬度为HRC 66.8 ,冲击韧性为6.86 J/cm2,抗弯强度为1 343.10 MPa。当TiCp添加量为25wt%时硬度达到最大值HRC 67.20 。   相似文献   

9.
采用无压烧结制备出不同Ti-Fe含量的HA/Ti-Fe生物复合材料,对其组织结构和力学性能进行了研究.显微组织的观察表明:均匀分布于HA基体中的金属Ti-Fe增强颗粒呈一种新颖的蛋壳状组织结构,其中核区主要由Fe组成,壳层主要由Ti组成.力学性能测试结果显示:随着Ti-Fe含量的增加,HA/Ti-Fe复合材料的硬度有所下降,但材料的抗弯强度和断裂韧度均明显提高.当Ti-Fe含量为5%时,抗弯强度出现最大值93MPa,与纯HA相比提高了42%;当Ti-Fe含量为15%时,材料的断裂韧度达到最大值1.3MPa·m1/2,较纯HA提高了128%.良好的界面结合和分布于壳层的韧性相Ti是导致材料力学性能大幅提高的主要原因.  相似文献   

10.
纳米改性金属陶瓷的组织和力学性能   总被引:13,自引:6,他引:13       下载免费PDF全文
讨论了纳米TiN改性TiC基金属陶瓷(纳米改性金属陶瓷)的组织与力学性能。结果表明,金属陶瓷组织仍为两相结构(陶瓷相+金属相),其中粗大的陶瓷相为芯/壳结构,即Ti(C,N)芯外包覆有一层硬质相(Ti,Mo,W)(C,N)(即"SS"相)。TEM观察显示,纳米TiN主要在两相或三相晶界上分布。随纳米TiN的增加,纳米改性金属陶瓷的组织明显细化;组织的细化与纳米TiN在TiC/TiC晶界的分布阻止了TiC晶粒的长大有关。抗弯测试表明,抗弯强度在添加8 wt%纳米TiN时达到最大值;抗弯断口显示沿晶断裂为主要的断裂模式。  相似文献   

11.
碳化硅(SiC)陶瓷具有优异的力学性能, 但是其断裂韧性相对较低。石墨烯的引入有望解决碳化硅陶瓷的断裂韧性较低的问题。本研究采用热压烧结工艺, 制备了具有不同还原-氧化石墨烯(rGO)掺入量的SiC复合材料。经过2050℃保温、40 MPa保压1 h后, 所制备的复合材料均烧结致密。对复合材料中rGO的掺入量、微观结构和力学性能的相互关系进行分析和讨论。加入4wt%的rGO后, 复合材料的三点抗弯强度达到564 MPa, 比热压SiC陶瓷提高了6%; 断裂韧性达到4.02 MPa•m1/2, 比热压SiC陶瓷提高了54%。加入6wt%的rGO后, 复合材料的三点抗弯强度达到420 MPa, 略低于热压SiC陶瓷, 但其断裂韧性达到4.56 MPa•m1/2, 比热压SiC陶瓷提高了75%。裂纹扩展微观结果显示, 主要增韧机理有裂纹偏转、裂纹桥连和rGO片的拔出。  相似文献   

12.
Titanium carbide (TiC) and carbon nanotubes (CNTs) were introduced into zirconium carbide (ZrC) ceramics to improve the fracture toughness. ZrC–TiC and ZrC–TiC–CNT composites containing 0–30 vol.% TiC and 0.25–1 mass% CNT were prepared by spark plasma sintering at temperatures of 1750–1850 °C for 300 s under a pressure of 40 MPa. Densification behavior, microstructure, and mechanical properties of the ZrC-based composites were investigated. Fully dense ZrC–TiC and ZrC–TiC–CNT composites with a relative density of more than 98 % were obtained. Vickers hardness of ZrC-based composites increased with increasing TiC content and the highest hardness was achieved with the addition of 20 vol.% TiC. Addition of CNTs up to 0.5 wt% significantly increased the fracture toughness of ZrC-based composites, whereas the addition of TiC did not have this effect.  相似文献   

13.
通过调整反应体系中Ti、 C及B之间的原子摩尔比, 采用超重力下燃烧合成工艺, 制备出TiB2系列摩尔分数的TiC-TiB2复合陶瓷。利用场发射扫描电镜(FESEM)观察了复合陶瓷微观组织, 研究了TiB2成分对复合陶瓷力学性能的影响。结果表明: 随着TiB2摩尔含量增加, 陶瓷基体逐渐从TiC球晶组织转化为TiB2片晶组织, 在TiB2摩尔分数为50%时, 可获得细晶乃至超细晶TiC-TiB2复合陶瓷, 而且残留于基体上的α-Al2O3夹杂量也最低。陶瓷相对密度、 Vickers硬度与弯曲强度均在50%TiB2(摩尔分数, 下同)时呈现最大值, 而陶瓷断裂韧性则在66.7% TiB2时出现最高值。陶瓷断裂模式为TiC穿晶断裂与TiB2沿晶断裂的混合模式, 且随TiB2摩尔分数增加至66.7%, TiC穿晶断裂倾向显著减弱而TiB2沿晶断裂倾向明显增强。TiC-TiB2细晶及超细晶凝固组织的获得使TiC-50%TiB2复合陶瓷在小尺寸TiB2片晶诱发的裂纹偏转、 裂纹桥接及片晶拔出增韧机制作用下, 具有最高的弯曲强度及较高的断裂韧性。  相似文献   

14.
分别以Ti-B4C-C体系和Ti-B4C-C-Al体系复合粉为反应原料, 利用自反应喷射成形技术制备Ti(C,N)-TiB2基复合陶瓷坯件. 利用XRD、SEM、EDS、TEM等方法, 研究分析了向喷射体系中加入5wt%金属Al对喷射沉积坯件组织结构、主要力学性能的影响及其原因. 结果表明, Ti-B4C-C体系的喷射沉积坯件主要由TiC0.3N0.7和TiB2主相及TiO2副产物相组成, 其致密度、维氏硬度、弯曲强度、断裂韧性等性能分别为97.2%、17.3GPa、387MPa、6.0MPa·m1/2; 喷射体系中添加5wt%金属Al后, 喷射沉积坯件的主相仍为TiC0.3N0.7和TiB2, 但副产物相中不含有害相TiO2, 而增加了对复合材料有益的Al2O3与Ti3Al相, 坯件内TiB2颗粒长径比增大, 出现大量长棒状晶, 并使坯件的致密度、维氏硬度、弯曲强度、断裂韧性等性能也分别提高到97.7%、20.6GPa、425MPa、7.3MPa·m1/2.可见金属Al的添加可有效抑制喷射过程中Ti的氧化, 明显改善喷射沉积坯件的综合力学性能.  相似文献   

15.
Microstructure and mechanical properties of hot-pressed SiC-TiC composites   总被引:1,自引:0,他引:1  
Hot-pressed SiC-TiC composite ceramics with 0–100 wt% TiC have been investigated to determine the effect of composition (amount of TiC) on the elastic modulus, hardness, flexural strength and fracture toughness,K IC. The composites exhibited superior mechanical properties compared to monolithic SiC and TiC, especially in fracture toughness,K IC, value for 30–50 wt% TiC composite. The maximum values ofK IC and room-temperature flexural strength were 6 MPa m1/2 for a 50 wt % TiC and 750 MPa for a 30 wt% TiC composite, respectively. The observed toughening could be attributed to the deflection of cracks due to dispersion of the different particles. Although no third phases were detected by both TEM and XRD studies, an EDAX study and resistivity measurements indicated some possibility of solid solutions being present. The composites containing more than 30 wt% TiC, exhibited resistivity lower than 10–3 cm which is favourable for electro-discharge machining of ceramics.  相似文献   

16.
In this paper, the influence of micron-grained WC additions with the different grain sizes on the microstructure and hardness of ultrafine WC–Co cemented carbides at the elevated temperature were investigated by the scanning electron microscope and mechanical properties test. The Vickers hardness and transverse rupture strength of hardmetals were measured at temperatures ranging from room temperature to 800°C. The results show that the addition of micron-sized WC particles can lead to the increase of fracture toughness and slow the decreasing of hardness at the elevated temperature.  相似文献   

17.
研究了用热压烧结方法制备的不同碳纳米管(CNTs)含量的ZrB2-SiC- xwt% CNTs (x=0、1.0、2.5、4.0) 复合材料的工艺条件、力学性能和微观结构. 用TEM观察了试样的微观结构, 用SEM观察了试样断口形貌和裂纹扩展情况, 并对其强韧化机制进行了分析. 研究表明, 碳纳米管主要分布沉积在ZrB2颗粒内部, 形成内晶型结构, 在CNTs含量为2.5%时, 相对密度、维氏硬度和弯曲强度分别为99.6%、21.7GPa和542MPa, 断裂韧性达到6.10MPa·m1/2. 碳纳米管加入后材料致密性提高、晶粒细化,所形成的内晶型结构是材料强度和韧性得以提高的原因.  相似文献   

18.
In this paper,the microstructure of WC-Co alloys with and without nano-additives was characterized by scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The hardness and fracture toughness was tested by using a Vickers hardness tester and a universal testing machine.The cutting test was carried out at different feed velocities(250 r/min and 320 r/min),and the contact pairs are cutting tools and 45# steel bars.Results showed that the hardness and fracture toughness of WC-Co cemented carbides with nano-additives are higher than that of WC-Co cemented carbides without nano-additives,and they are increased 10.21% and 19.69%,respectively.The flank worn width and crater width of cutting tools decrease greatly with the addition of nano-additives.For the nano-modified specimen with WC grain size of 7 μm,both the flank worn width and crater width are the minimum after the cutting process.And there are little built-up layers and some pile-up regions on the flank face leading to high cutting performance for the nano-modified cemented carbides.There are some melted regions on the flank face of cutting tools without nano-additives,and the WC grains on the cross section of alloys without nano-additives show severe fragmentation.The wear type of WC-Co is flank wear,and the wear mechanism is abrasive,adhesion and oxidation wear.  相似文献   

19.
1. IntroductionSilicon nitride is one of the promising structural ma-terials for high-temperature applications because of itshigh resistance to thermal shock, as well as high strength,high fracture toughness, and high resistance to chemicalattack[1~3]. However, wider application has been lim-ited mainly due to its inherent brittleness. Many effortshave been made to improve its properties by control-ling the microstructure or by fabricating various typesof composites[4~7].The silicon nitride wi…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号