共查询到20条相似文献,搜索用时 0 毫秒
1.
由于藻类细胞复杂多样且显微图像受光线影响,传统的图像分割算法对藻类图像分割难以取得满意的效果。针对传统的水平集C-V模型不能充分利用图像局部区域灰度变化信息从而导致难以准确分割灰度不均物体等缺陷,利用一种基于局部区域的C-V(LCV)模型,应用于藻类细胞显微图像的分割。通过实验对比,显示出LCV模型相对于传统分割方法可以分割灰度均匀或不均匀的藻类图像。 相似文献
2.
由于医学图像中的复杂目标通常难以被完全分割,提出标记分水岭与改进型Li模型的组合图像分割算法。改进型Li模型构造了符号压力函数来取代传统的停止函数,解决了曲线单向演化的问题。标记分水岭具有较强的抑制噪声的能力,对医学图像的弱边缘具有较强的捕获能力。所以首先运用标记分水岭算法对图像进行预分割,快速准确定位目标区域边缘信息。再引入改进型Li模型算法,通过符号压力函数来指引曲线演化方向,控制演化速度大小,实现对复杂目标的完全分割。实验结果表明:全局信息和边缘信息都能被获得,该组合算法对医学图像中的复杂目标的分割效果较满意。 相似文献
3.
作为图像识别与图像理解的关键步骤,图像分割一直受到人们的重视,很多相应的算法被提出,但它也面临着很多挑战。医学图像分割的难点是对模糊边缘的连续有效分割,为准确的目标提取提供保障。提出一种新的医学图像分割算法,算法在拉普拉斯水平集图像分割算法基础上,融入图像的区域信息,重新定义了驱动水平集表面演化的速度函数。算法除了利用图像的边缘梯度信息外,还充分融合了图像的区域信息,从而在保持图像边缘局部特征的同时,充分利用了区域全局优化的特点,可实现医学图像的有效分割。与经典水平集分割方法相比,改进后的方法能够更好地保持边界的连续性,得到比较完整的分割结果,为图像分析提供可靠的科学数据。 相似文献
4.
针对医学图像中存在的亮度分布不均匀(intensity inhomogeneity)的特点,对Chan-Vese提出的基于Mumford-Shah模型的水平集分割图像的算法进行了改进。局部区域信息是对亮度分布不均匀图像进行准确分割的关键,但是传统的基于区域信息的C-V模型没有利用到这种局部区域的图像信息,因此无法正确分割强度分布不均匀图像。利用局部区域信息构造能量函数,提出了一种基于局部区域信息的改进C-V模型。该模型无需大量计算,水平集函数可快速收敛。MR图像、血管造影图像和X线骨折图像的实验结果证明了该方法的高效性。 相似文献
5.
6.
由于基于简化M_S模型的多相水平集图像分割模型仅仅利用了图像的区域信息,对图像的另一个重要信息(边缘信息)没有有效的利用,同时在分割的过程中需要对水平集函数不断进行重新初始化.为了解决上述模型的不足,本文提出改进的双水平集医学图像分割方法.该方法主要是在基于简化M_S模型的多相水平集图像分割模型的基础上将图像的边界信息项和为避免重新初始化水平集函数的惩罚项加入模型中.实验结果表明,添加了边界信息后的模型能够在边界位置定位更容易,同时改进后的双水平集模型在实现多目标分割时,无需重新初始化水平集函数,减少了计算量,简化了算法实现的复杂度. 相似文献
7.
基于Mumford-Shah模型的快速水平集图像分割方法 总被引:82,自引:4,他引:78
该文对Chan-Vese提出的基于Mumford-Shah模型的水平集分割图像的算法做了两方面的改进:首先改进了C-V方法的偏微分方程,使得C-V方法可以快速计算出全局最优分割;其次,采用源点映射扫描方法来快速计算符号距离函数,克服了常规水平集方法中构造符号距离函数计算量大的缺点,并结合该文所提出的基于快速步进法生成符号表的方法,进一步提高了计算稳定性.两方面的改进提高了计算的速度和分割效果,试验统计结果显示,对于512×512的大幅图像,一般只需要10次左右的迭代就可以得到最优的分割效果.对合成图像、生物医学图像的分割结果表明了本文方法的稳健、快速. 相似文献
8.
9.
基于传统的变分水平集方法的图像分割,水平集函数必须周期性地重新初始化使之保持为符号距离函数,这存在如何选择重新初始化的时间和方式的难题.Li模型通过在能量泛函中引入一个内部约束能量,去除了水平集函数在演化过程中需重新初始化的难题.通过对Li模型的分析,提出了一个新的变分水平集的分割模型.该模型通过在能量泛函中加入一个较简单的内部约束能量,同样可以实现水平集演化过程中的无需重新初始化.并且通过对边缘停止函数的重新定义,引入了新的外部能量,使得本文模型对噪声图像的分割更具鲁棒性.实验表明无论是在收敛速度上,还是在对噪声图像的分割质量上,本文模型和Li模型相比都具有一定的优势. 相似文献
10.
随着图像处理技术不断发展,图像分割技术也在不断的走向成熟,但是目前比较成熟的分割方法都存在一定的局限性,传统的分割方法一般都难以实现全局分割,而且对目标边缘比较模糊的物体难以实现有效的精确的分割;基于区域信息和水平集方法的图像分割算法弥补了这些缺陷,该算法是在传统的动态轮廓GAC模型和C_V模型的基础上进行改善;通过实验分析,首先,该算法极大提高了图像分割的精确性,使得轮廓线能够在要分割目标的边缘附近停止演化,即使目标的边缘是模糊不清的图像,该算法也能实现精确地分割;其次,该算法还克服了传统动态轮廓分割算 相似文献
11.
12.
肾脏医学图像分割是医学图像分析和非侵入式计算机辅助诊断系统中的关键步骤。从CT、MRI图像中分割出肾脏及肾皮质,计算其体积和皮质厚度等信息,有助于评估肾脏的功能,从而制定相应的治疗方案。根据肾脏序列图像相邻切片之间结构灰度分布的相似性,提出了一种基于图割和水平集方法的自动肾脏及肾皮质分割方法。选取皮质区域具有足够对比度和清晰度的切片为初始参考图像,使用霍夫森林算法检测肾脏区域,对前景、背景进行均值聚类以估计其灰度分布,获取图割模型能量函数,分割出肾脏整体;通过形态学处理得到相邻切片肾脏的分割候选区域,重复上述分割。以此初步分割结果作为水平集方法的初始轮廓,进一步分割得到三维的肾脏整体和肾皮质区域。实验结果表明,基于图割和水平集的肾脏分割方法能够比较准确地分割出肾脏及肾皮质。 相似文献
13.
图像分割是图像工程中热门且举足轻重的一项研究.图像分割的本质是将感兴趣的目标从图像背景中提取出来,以便后续处理,是图像工程中十分关键的一步.重点研究水平集方法在图像分割技术中的应用,通过水平集方法能够将图像梯度信息、区域统计信息和目标形状等信息融入分割框架中,能出色地控制轮廓的演化,同时减少了计算量,从而获得更高的分割... 相似文献
14.
提出了一种由测地线活动轮廓模型GAC(Geodesic Active Contour)和局部区域信息相结合的图像分割新方法LGAC(Local Geodesic Active Contour)。构造了基于图像局部信息的演化曲线符号压力函数和演化模型,用水平集方法演化实现,零水平集能准确地在目标边缘收敛,对目标背景对比度较低的图像的分割达到理想效果。利用高斯核函数对水平集函数平滑处理以维持演化稳定,节省了计算时间。实验结果证明了该方法的可行性。 相似文献
15.
医学图像分割是医学图像处理中的关键问题之一.图像序列的分割操作是医学图像三维重建的必要准备,而软组织图像分割则是医学图像分割中的一大难点.基于曲线演化理论的,借助偏微分方程等数学工具的水平集方法已经被广泛应用于医学图像分割领域.介绍了水平集方法的数学模型,并设计了一种基于窄带水平集方法的,专门针对软组织图像分割的算法.用边界追踪等方法提取第一层图片中的软组织相关轮廓;将它们作为初始水平集曲线,再利用窄带水平集方法进行演化;经过两个阶段的迭代处理,最终自动分割出整个软组织图像序列.实验表明该算法具有较高效率、分割结果精确,所产生的分割结果可以作为三维重建的合适的数据集. 相似文献
16.
医学影像分割是图像分割中的难点,具有重要的应用价值。针对医学影像的特点和图像分割算法的性能差异,提出了一种水平集医学图像分割改进算法。首先通过曲线演化仿真,得出水平集算法核心-速度函数;其次选定速度函数实现对图像的粗略分割,将灰度值较大的区域设置成灰度值较小的值,通过仿真演化准确找到图像中目标区域;最后利用选定的速度函数通过初始算法,经过一定次数的迭代操作后实现了医学影像的准确分割。实验结果表明:该算法可以精确地找到肿瘤所在区域,具有较好的分割性能和一定的鲁棒性。 相似文献
17.
医学图像中要分割的对象常比较复杂,通常的图像自动分割方法很难得到理想的结果.本文在曲线演化图像分割方法的基础上,提出了一种基于水平集方法的人机交互模型.该模型不仅继承了水平集方法对拓扑变化的自适应性,而且还有良好的人机交互性能.在分割过程中,医生只要在图像的适当位置上加入少许几个标记点,本方法就可以在医生的监督指导下对复杂的对象进行准确的分割.实验表明,本文的交互模型具有良好的实用性. 相似文献
18.
针对医学图像低对比度、灰度不均匀等特点,提出了一种小波多尺度聚类水平集的图像分割方法,能够很好地解决医学图像灰度不均匀的问题。首先,利用小波多尺度分析的良好信噪分离能力提取各尺度下图像的有效边缘信息,将边缘信息添加到水平集模型的能量函数中从而提高模型的局部控制能力。然后,基于灰度不均匀的图像模型,派生出对于感兴趣区域的局部灰度聚类,在每个点的邻域内定义基于灰度的局部聚类准则函数。将局部聚类准则函数转化为全局准则函数。在水平集框架中,该准则根据水平集函数定义了代表图像域划分的能量项和引起图像强度不均匀的偏置域。最后,从小波变换的顶层低频子带图像开始逐层采用改进的聚类水平集方法分割图像,并将分割结果通过插值方式传递至下一层作为分割的初始轮廓,最终实现灰度不均匀医学图像的分割。实验结果表明,该方法能够有效地分割医学图像,具有计算更加鲁棒稳定、效率更高和更加准确的优点。 相似文献
19.
针对 DRLSE 水平集模型对噪声敏感、依赖初始轮廓位置以及演化速度缓慢等不 足,利用小波变换和小波阈值去噪的方法,构造对噪声不敏感的边缘信息刻画矩阵,定义基于 图像信息的边缘停止函数和自适应权重系数,获得了改进的 DRLSE 水平集图像分割模型。利 用有限差分法对模型求解,并采用 Jaccard 相似度作为评价模型的定量分析方法,数值结果显示 改进的模型及算法对图像分割的有效性,克服了 DRLSE 水平集模型分割含噪图像以及定义初 始轮廓位置的局限性,提高了 DRLSE 水平集模型的计算效率和图像分割精度。 相似文献
20.
针对高噪声、低对比度的医学图像难以快速准确分割的问题,结合基于像素的传统方法和基于水平集的活动轮廓模型,提出了一种混合的医学图像分割新技术.首先依据待分割对象的先验知识交互选取感兴趣区域.然后由传统的方法和基于水平集的C-V模型结合实现感兴趣区域图像的预分割.预分割的结果直接作为窄带变分水平集模型的初始轮廓,演化曲线在很短的时间内准确收敛到待分割物体的边缘. 相似文献