共查询到16条相似文献,搜索用时 72 毫秒
1.
采用全自动合成模块,合成临床使用的11 C-Raclopride。用11 C-Triflate-CH3通入含10μL的0.5mol/L氢氧化钠的去甲基Raclopride的200μL的丙酮溶液中,常温反应1min,经半制备HPLC分离,收集粗产品,再经固相萃取,用1mL乙醇淋洗SEP-PAK C-18柱,收集淋洗液,用生理盐水稀释即得可供注射的11 C-Raclopride。结果表明,反应体系中加入碱的量(1~50μmol)对标记率影响不大,但影响了C-N甲基化的副反应产物比例。合成时间为28min,前体用量为0.1~0.4mg,合成效率为(55.1±8.4)%(n=40),放化纯度大于99%,放射性浓度为370~550 MBq/mL,乙醇浓度低于10%,比活度为1.73×1014 Bq/g,产品无菌、无热源符合要求。采用11 C-Triflate-CH3为标记前体,经国产商品化模块全自动合成的11 C-Raclopride的质量满足临床的要求。 相似文献
2.
3.
11C-PIB是诊断阿尔茨海默病(AD)的特征靶Aβ斑块的正电子放射性药物,本工作系统研究了以11CH3-Triflate为甲基化试剂合成11C-PIB合成的影响因素。在国产碳多功能合成仪上, 研究前体量、溶剂、反应温度及体系的pH等对11C-PIB效率的影响,并对合成条件进行优化。结果显示:前体量、溶剂、反应温度及体系的pH均明显影响合成效率。优化后的合成条件为:丙酮为溶剂,前体浓度为5 g/L,反应温度为常温,pH为中性。在此条件下,11C-PIB的合成效率为65.2%±4.7%(n=8,校正效率),产品的放化纯度大于99%,比活度为70.6 GBq/g(18.0 TBq/mmoL)。从11CO2到11C-PIB的合成时间为30 min, 单次合成的产量为3.7 GBq。以上结果表明,通过优化合成条件,可以稳定、高质量地合成11C-PIB,以满足临床需要。 相似文献
4.
为制备满足临床应用需要的~(11)C-氟马西尼,以~(11)C-CH3I为甲基化试剂,使用国产PET-CM-3H-IT-I型模块对~(11)C-氟马西尼的制备及纯化方法进行改进。用液相法合成~(11)C-CH3I,研究反应溶剂、碱性强度、碱量、反应温度对合成效率的影响,优化~(11)C-氟马西尼的合成条件。优化后的条件为:先将~(11)C-CH3I在室温下通入含1mg去甲基氟马西尼前体和1mg氢化钠的200μL DMF溶液中,加热至55℃恒温反应2min。反应物经半制备HPLC分离收集粗产品,再经SEP-PAK C-18柱固相萃取,对产品质量进行分析。结果表明,以捕获~(11)C-CO2计算,~(11)C-氟马西尼合成时间为(26±2)min,经衰减校正后放化产率为(45±4)%(n=10),产品放化纯度大于99%,放射性浓度为370~550 MBq/mL,比活度为4.7TBq/mmol,产品细菌和热源检测结果符合规定。通过优化反应条件,大幅度提高了标记率,用国产合成模块能够制备高质量、高比活度的~(11)C-氟马西尼,满足临床应用需求。 相似文献
5.
采用国产碳-11多功能合成模块,研究全自动化合成11 C-乙酸盐的工艺流程。用0.1mL 1.5mol/L的溴化甲基镁在Loop环中与11 C-CO2反应生成中间体乙酰溴化镁,中间体由乙酸水解,再经纯化、洗脱、盐酸酸化,通入氮气除去未反应的11 C-CO2,以磷酸三钠中和后过无菌滤膜得11 C-乙酸盐注射液。总合成时间约为10min,校正放化产率为(58.5±6.7)%,放化纯度大于99%。使用气相色谱仪测得产品中有机溶剂丙酮和乙腈的残留浓度分别为(0.007±0.002)%和(0.005±0.002)%。整个合成过程实现全自动化,操作简单、灵活,合成产率和放化纯度较高,可以满足临床使用需求。 相似文献
6.
目的:自动化合成5-羟色胺转运蛋白显像剂11 C-DASB并进行大鼠Micro PET/CT显像;方法:通过改变甲基化试剂、溶解前体溶剂及反应条件,得到优化的标记条件作为碳-11多功能合成模块的输入参数,进行自动化合成11 C-DASB,大鼠静脉注射11 C-DASB 45 min后进行显像;结果:采用11 C-CH3-Triflate作为甲基化试剂,通入新配制的含1mg去甲基DASB前体的500μL DMSO溶液内,80℃下加热2min,标准率为63.7%,大鼠显像表明,11 C-DASB特异性的浓聚于SERT富集区域;结论:经优化,11 C-DASB自动化合成可得到较高产率,大鼠显像表明,其特异性浓聚于SERT富集区域,有望作为5-羟色胺转运蛋白显像剂。 相似文献
7.
8.
医用短寿命放射性核素~(11)C是由加速器制备的,其原子核的物理性质适宜于人体显象。~(11)C衰变发射的正电子经湮没产生一对方向相反的光子,由体外用符合测量定位准确,配合使用电子计算机和正电子断层照相机,可以得到对体内浓集部位的三维图象。~(11)C-化合物参与体内某些代谢过程,则不仅可以做形态方面的定位观察,还可以获得有关整体条件下体内代谢过程的重要信息。苯甲酸在体内与甘氨酸结合生成马尿酸,迅速经肾曲小管排出,在此过程中将浓集于肾。心肌代谢中能量来源小部分由葡萄糖,大部分由脂肪酸类(油酸、软脂酸、硬脂酸)供给,因此各种脂肪酸进入血液后,将不同程度地浓集于心肌。本文报导~(21)C-本甲酸和~(11)C-丙酸在动物体内分布和由体外显象的试验结果。 相似文献
9.
PET/CT显像作为一种诊断肿瘤、评价疗效和预后的有力工具得到了快速的发展。氨基酸类正电子药物被临床证明是可以弥补当前18F-FDG PET/CT不足的重要药物,不像18F-FDG,氨基酸类分子探针在正常脑组织中的摄取很低,在良性的病变如炎症、水肿、坏死和纤维化的组织几乎不摄取,可以提高PET/CT显像的特异性,其合成标记的研发日益得到重视。本文重点介绍了当前利用短半衰期正电子核素18F和11C标记合成正电子类氨基酸的方法学和初步应用研究的最新进展。 相似文献
10.
将国产11 C碘代甲烷模块和氟多功能模块联合使用,合成11 C的正电子放射性药物。由11 C碘代甲烷模块合成甲基化试剂11 CH3-Triflate,将11 CH3-Triflate通入到含有前体的氟多功能模块第二反应管中,加热后经半制备HPLC纯化,收集产品后再经固相萃制备可供注射的11 C放射性药物。通过以上结合,经HPLC纯化,可自动化合成11 C-Ralopride(合成效率(38.2±4.5)%,n=10)、11 C-PIB(合成效率(68.4±3.2)%,n=12)、11 C-DASB(合成效率(52.4±5.5)%,n=4)、11 C-PK11195(合成效率(45.6±7.1)%,n=8)。制备药物的放化纯度大于95%。研究表明,将国产11 C碘代甲烷模块和氟多功能模块结合使用,可以合成多种11 C放射性药物以满足临床的需求。 相似文献
11.
The optimization for high synthesis yield was designed with 11C-Triflate-CH3I as methylation agent for dopamine transporter imaging agent of11C-β-CFT. The influence factors of the synthesis process were discussed, and the optimum synthetic conditions were established. In the paper, the study showed that the amount of precursor, the irradiation time, eluated condition, the reaction solvent etc could effect the synthetic efficiency.11C-β-CFT was automatic synthesized on PET-CM-3H-IT-Ⅰ with the optimum process conditions as the irradiation time 10-24 minutes, 0.5-1.0 g/L of precursor in 0.2 mL acetone: acetonitrile(1∶1, V∶V) and room temperature. We obtained a radiochemical yield of (76.93±6.49)% (n=76,11C-Triflate-CH3 EOB). The radiochemical purity of final products were over 97%. The specific activities of final products were over (56.26±1.55) TBq/g. It took 16 minutes from11C-CO2 to11C-β-CFT and the radio activity of11C-β-CFT were (8.07±1.94) GBq (n=76). By optimization of the technological conditions, the target product was suitable for clinical, the synthetic process was reliable and full automated, the product yield was improved and the residual problem of Sep-Pak C18 was resloved. 相似文献
12.
为研究国产11C-多功能合成模块经LOOP环法合成放射性药物[N-甲基-11C]胆碱(11C-Choline,11C-CH)的合成方法,对碱当量、溶剂效应及前体量等影响因素进行研究,优化LOOP环法合成11C-CH的合成工艺。11C-CH的优化条件:前体量为60~150 uL,无碱无溶剂,室温与11C-CH3I反应。此条件下11C-CH的合成效率为(72.16±2.96)%(n=19, 11C-CH3I未校正效率),产品的放化纯度均大于95%,产量为(7.59±1.54) GBq(n=19)。国产11C-多功能合成模块LOOP环法合成11C-CH与C18柱固相法进行比较表明,LOOP环可以多次重复利用,降低生产成本,提高合成效率,实现稳定、全自动化合成11C-CH,产品满足临床需求。 相似文献
13.
14.
为快速、高效合成中枢神经阿片受体显像剂11C-carfentanil(11C-CFN),对国产商业化11C-胆碱合成模块略做改动,并优化了合成条件。结果表明,采用4-哌啶乙酸钠,4-[(1-丙羰基)苯胺]-1-(2-苯乙基)[钠盐]作前体,DMSO作溶剂,11CH3-triflate作甲基化试剂,在胆碱模块上采用反应瓶法,可自动化合成11C-CFN。合成的11C-CFN活度>14.8 GBq、比活度>1.4×1014Bq/g、放化纯度>99%,校正合成效率>80%(n=55,以11CH3-triflate计算),全部合成时间为18 min。经Micro PET/CT证实,11C-CFN可用于μ阿片受体的PET显像研究。 相似文献
15.
16.
为合成μ-阿片受体显像剂:1-(2-苯乙基)-4-(N-苯基丙酰胺基)哌啶-4-羧酸[11C]甲酯([11C]-methyl 1-phenethyl-4-(N-phenylpropanamido) piperidine-4-carboxylate,11C-CFN),合成了标记前体:1-苯乙基-4-( N-苯基丙酰胺基)... 相似文献