首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of microstructural morphology on quasi-static and dynamic deformation behavior of a Ti-6Al-4V alloy were investigated in this study. Quasi-static and dynamic torsional tests were conducted using a torsional Kolsky bar for Widmanstätten, equiaxed, and bimodal microstructures, which were processed by different heat treatments, and then, the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Quasi-static torsional properties showed a tendency similar to tensile properties and ductile fracture occurred in all three microstructures. Under dynamic torsional loading, maximum shear stress of the three microstructures was higher and fracture shear strain was lower than those under quasi-static loading, but the overall tendency was similar. In the Widmanstätten and equiaxed microstructures, adiabatic shear bands were found in the deformed region of the fractured specimens. The possibility of the adiabatic shear band formation under dynamic loading was quantitatively analyzed, depending on how plastic deformation energy was distributed to either void initiation or adiabatic shear banding. It was found to be most likely in the equiaxed microstructure, whereas it was least likely in the bimodal microstructure.  相似文献   

2.
The present study is concerned with a correlation between dynamic deformation properties obtained from the dynamic Kolsky bar test with the adiabatic shear banding behavior developed in Al-Li alloys upon ballistic impact, and then with the ballistic performance. The selected materials were a 2090 Al-Li alloy, a WELDALITE 049 alloy, and a 7039 Al alloy, to allow a comparative study of different strengths and microstructures. After the ballistic impact testing, the amount and the distribution of adiabatic shear bands were examined using optical and scanning electron microscopes. In the front side of the impacted area, many thin delaminated sheets and a large amount of fragmentation were observed in the 2090 alloy and the WELDALITE alloy, respectively. Near the impacted region, a large amount of plastic flow also existed, and adiabatic shear bands were hardly observed in the 2090 and the WELDALITE alloys, whereas they easily formed in the 7039 alloy. Since adiabatic shear bands usually deteriorate the impact resistance of target materials, the ballistic performance of each alloy was discussed by comparing the adiabatic shear banding behavior with microstructure, strength level, and dynamic torsional properties.  相似文献   

3.
利用分离式霍普金森压杆装置(SHPB)对低间隙Ti-6Al-4V(TC4 ELI)合金的等轴组织、双态组织和魏氏组织试样进行了动态压缩试验。应变率分别为ε=2000,3000,4000 s-1,得到了动态压缩真应力-应变(σ-ε)曲线,并对试验后发生剪切失效破坏的试样沿纵剖面切开,利用金相显微镜(OM)进行显微组织观察。结果表明:动态压缩条件下TC4 ELI合金3种组织试样的真应力-应变曲线大致分为弹性阶段和塑性阶段,没有明显的屈服平台,3种组织状态下的试样在高应变率下应变强化效应不明显,表现出一定的应变率强化效应;在4000 s-1应变率加载条件下,平均动态流变应力(σ)、均匀动态塑性应变(ε)以及冲击吸收功(E)按等轴组织、双态组织和魏氏组织顺序依次减小,等轴组织试样的σ,ε和E分别达到了1400 MPa,0.34%和470 kJ.m-3,具有较好的动态力学性能;在4000 s-1应变率加载条件下3种组织状态的试样均发生了剪切失效破坏,并在其纵剖面上都观察到了一条白亮的绝热剪切带(ASB),裂纹沿着绝热剪切带由圆柱试样的圆柱面向中心扩展,与ASB形成和扩展的方向一致,剪切带与导致断裂的裂纹密切相关。  相似文献   

4.
The effects of the volume fraction of tempered martensite on the tensile and dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure were investigated in this study. Five microstructures having various tempered-martensite volume fractions were obtained by varying heat-treatment conditions. Dynamic torsional tests were conducted on them using a torsional Kolsky bar. The test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-band formation. Under a dynamic loading condition, the maximum shear stress increased with increasing tempered-martensite volume fraction, whereas the fracture shear strain decreased. Observation of the deformed area after the dynamic torsional test indicated that a number of voids initiated mainly at α-phase/tempered-martensite interfaces, and that the number of voids increased with increasing martensite volume fraction. Adiabatic shear bands of 6 to 10 μm in width were formed in the specimens having lower martensite volume fractions, while they were not formed in those having higher martensite volume fractions. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation.  相似文献   

5.
The dynamic deformation behavior of ultrafine-grained low-carbon steels fabricated by equal-channel angular pressing (ECAP) was investigated in this study. Dynamic torsional tests, using a torsional Kolsky bar, were conducted on four steel specimens, two of which were annealed at 480 °C after ECAP, and then the test data were compared in terms of microstructures, tensile properties, and adiabatic shear-band formation. The equal-channel angular pressed specimen consisted of very fine, equiaxed grains of 0.2 to 0.3 μm in size, which were slightly coarsened after annealing. The dynamic torsional test results indicated that maximum shear stress decreased with increasing annealing time, whereas fracture shear strain increased. Some adiabatic shear bands were observed at the gage center of the dynamically deformed torsional specimen. Their width was smaller in the equal-channel angular pressed specimen than in the 1-hour-annealed specimen, but they were not found in the 24-hour-annealed specimen. Ultrafine, equiaxed grains of 0.05 to 0.2 μm in size were formed inside the adiabatic shear band, and their boundaries had characteristics of high-angle grain boundaries. These phenomena were explained by dynamic recrystallization due to a highly localized plastic strain and temperature rise during dynamic deformation.  相似文献   

6.
This article presents a study of the microstructural development of the adiabatic shear band in an HY-100 steel. The steel was deformed at a high strain rate by ballistic impact, and subsequent metallographic observations along with electron microscopy were performed. A number of white- etched shear bands were found near the perforated region, and three typical microstructural features of the adiabatic shear band were observed: elongated grain structure at the boundary between the shear band and matrix, fine equiaxed grain structure with high dislocation densities in the middle of the shear band, and relatively coarse-grained structure located between the above two structures. These microstructures might be formed in an extremely short time by the combined effects of the large temperature rise and the highly localized deformation. Since very complex phenomena might occur within the shear band, possible mechanisms, such as dynamic recovery and strain-induced dynamic phase transformation, are suggested to explain the micro- structural development of the adiabatic shear band.  相似文献   

7.
The effects of the volume fraction of tempered martensite on the tensile and dynamic deformation properties of a Ti-6Al-4V alloy having a bimodal microstructure were investigated in this study. Five microstructures having various tempered-martensite volume fractions were obtained by varying heat-treatment conditions. Dynamic torsional tests were conducted on them using a torsional Kolsky bar. The test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-band formation. Under a dynamic loading condition, the maximum shear stress increased with increasing tempered-martensite volume fraction, whereas the fracture shear strain decreased. Observation of the deformed area after the dynamic torsional test indicated that a number of voids initiated mainly at α-phase/tempered-martensite interfaces, and that the number of voids increased with increasing martensite volume fraction. Adiabatic shear bands of 6 to 10 μm in width were formed in the specimens having lower martensite volume fractions, while they were not formed in those having higher martensite volume fractions. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation. jointly appointed with the Materials Science and Engineering Department, Pohang University of Science and Technology  相似文献   

8.
This study is concerned with the effects of microstructural parameters on the cracking phenomenon occurring during cold forging of two AISI 1010 steels that were fabricated by converter steel making and electric furnace steel making, respectively. This allowed a comparison between microstructures that contained a small or large amount of nitrogen. Detailed microstructural analyses of the cracked region showed that a number of adiabatic shear bands, along which cracks initiated and propagated, were formed in the top interior part of the cold-forged pulley. Dynamic torsional tests were conducted using a torsional Kolsky bar in order to investigate the dynamic deformation behavior during cold forging, and then the test data were compared via microstructures, mechanical properties, adiabatic shear banding, and fracture mode. From the dynamic shear stress-strain curves, the steel containing a considerable amount of nitrogen showed a smaller shear strain of 0.2 at the maximum shear stress point, after which the shear stress decreased rapidly prior to fracture, whereas the other steel containing a smaller amount of nitrogen showed relatively homogeneous shear deformation. This dynamic torsional behavior correlated well with the cracking and adiabatic shear banding behavior, together with the yield-point phenomenon occurring in the steel containing more nitrogen. Because the cracking occurring during cold forging was associated with the adiabatic shear banding and the yield-point phenomenon, the minimization of nitrogen and the fast cooling rate after hot rolling were suggested to prevent the cracking.  相似文献   

9.
The objective of this study is to investigate the adiabatic shear band formation in 2124-T6 aluminum composites reinforced with SiC whiskers. The composites were deformed at high strain rates by ballistic impact. Adiabatic shear bands initiated from cracks near the impacted region were observed. The shear bands tended to propagate along the extrusion direction, since they were blocked by SiC whiskers. Within the shear bands, microvoids and microcracks formed, presumably by the temperature rise. Shear bands, together with microvoids and microcracks, deteriorated the impact resistance of target materials. Finally, performance of the composites against ballistic impact loading was discussed by comparing the behavior of shear banding with dynamic fracture toughness.  相似文献   

10.
《Acta Metallurgica》1985,33(4):667-676
A study has been made of the structure of adiabatic shear zones in Ti-6% Al-4% V with different parent microstructures, resulting from ballistic impact of steel spheres. Metallographic examination of well-developed shear bands showed that they consisted of zones of intense shearing distortion of the original microstructure, modified by the effects of elevated temperature. An analogy is made between their structure and that of the white-etching shear zones observed in steels. Unlike steels, however, there was no clear evidence in this alloy to suggest that the shear bands in the α + β microstructures had undergone a martensitic phase transformation. The structure of the shear zones in an α' martensite parent alloy appeared to be a tempered form of the original microstructure.  相似文献   

11.
12.
In the present study, ultrafine-grained microstructures of a conventional 5083 aluminum alloy were fabricated by equal-channel angular pressing, and their dynamic deformation and fracture behavior were investigated. Dynamic torsional tests were conducted on four aluminum alloy specimens using a torsional Kolsky bar, and then the test data were analyzed in relation to microstructures, tensile properties, and adiabatic shear-banding behavior. The equal-channel angular-pressed (ECAP) specimens consisted of ultrafine grains and contained a considerable amount of second-phase particles, which were refined and distributed homogeneously in the matrix as the equal-channel angular pressing pass number increased. The dynamic torsional test results indicated that the maximum shear stress increased, while the fracture shear strain remained constant, with increasing equal-channel angular pressing pass number. Observation of the deformed area beneath the dynamically fractured surface showed that a number of voids initiated mainly at second-phase particle/matrix interfaces and that the number of voids increased with increasing pass number. Adiabatic shear bands of 200 to <300 μm in width were formed in the as-extruded and 1-pass ECAP specimens having coarser particles, whereas they were hardly formed in the four-pass and eight-pass ECAP specimens having finer particles. The possibility of adiabatic shear-band formation was explained by concepts of absorbed deformation energy and void initiation.  相似文献   

13.
This study aimed at investigating effects of strain rate and test temperature on deformation and fracture behavior of three API X70 and X80 linepipe steels fabricated by varying alloying elements and hot-rolling conditions. Quasi-static and dynamic torsional tests were conducted on these steels having different grain sizes and volume fractions of acicular ferrite and polygonal ferrite, using a torsional Kolsky bar, and then the test data were compared via microstructures, tensile properties, and adiabatic shear band formation. The dynamic torsional test results indicated that the steels rolled in the single-phase region had the higher maximum shear stress than the steel rolled in the two-phase region, because their microstructures were composed mainly of acicular ferrites. Particularly in the API X80 steel rolled in the single-phase region, increased dynamic torsional properties could be explained by the decrease in the overall effective grain size due to the presence of acicular ferrite having smaller effective grain size. The possibility of the adiabatic shear band formation at low temperatures was also analyzed by the energy required for void initiation and difference in effective grain size.  相似文献   

14.
The stable and unstable plastic flow of Ti-6Al-2Sn-4Zr-2Mo-0.1Si (Ti-6242) has been investigated at temperatures from 816 to 1010 °C (1500 to 1850 °F) and at strain rates from 0.001 to 10 s-1 in order to establish its hot forging characteristics. In hot, isothermal compression, Ti-6242 with an equiaxed a structure deforms stably and has a flow stress which decreases with straining due to adiabatic heating. With a transformed-β microstructure, unstable flow in hot compression is observed and concluded to arise from large degrees of flow softening caused by microstructural modification during deformation and, to a small extent, by adiabatic heating. Both microstructures have a sharp dependence of flow stress on temperature. Using the concepts of thermally-activated processes, it was shown analytically that this dependence is related to the large strain-rate sensitivity of the flow stress exhibited by the alloy. From lateral sidepressing results, the large dependence of flow stress on temperature was surmised to be a major factor leading to the shear bands occurring in nonisothermal forging of the alloy. Shear bands were also observed in isothermal forging. A model was developed to define the effect of material properties such as flow softening rate and strain-rate sensitivity on shear band development and was applied successfully to predict the occurrence of shear bands in isothermal forging.  相似文献   

15.
The effects of microstructural factors on the quasi-static tensile and dynamic torsional deformation behaviors in Ti-6Al-4V alloys with Widmanstätten structures were investigated in this study. Dynamic torsional tests were conducted using a torsional Kolsky bar for five Widmanstätten structures, in which microstructural parameters such as colony size and α lamellar spacing were varied by heat treatments, and then the test data were analyzed in relation to microstructures, tensile properties, and fracture mode. Under dynamic torsional loading, maximum shear stress was largely dependent on colony size, whereas shear strain at the maximum shear stress point was on colony size as well as α lamellar spacing. Adiabatic shear bands were found in the deformed area of the fractured torsional specimens, and their width was smallest in the structure whose colony size and α lamellar spacing were both large. The possibility of the adiabatic shear band formation was quantitatively analyzed in relation to microstructural factors. It was the highest in the coarse Widmanstätten structure, which was confirmed by the theoretical critical shear strain (υ c ) condition for the adiabatic shear band formation.  相似文献   

16.
In this study, tungsten heavy alloy specimens were fabricated by mechanical alloying (MA), and their dynamic torsional properties and penetration performance were investigated. Dynamic torsional tests were conducted on the specimens fabricated with different sintering temperatures after MA, and then the test data were compared with those of a conventionally processed specimen. Refinement of tungsten particles was obtained after MA, but contiguity was seriously increased, thereby leading to low ductility and impact energy. Specimens in which both particle size and contiguity were simultaneously reduced by MA and two-step sintering and those having higher matrix fraction by partial MA were successfully fabricated. The dynamic test results indicated that the formation of adiabatic shear bands was expected because of the plastic localization at the central area of the gage section. Upon highspeed impact testing of these specimens, self-sharpening was promoted by the adiabatic shear band formation, but their penetration performance did not improve since much of kinetic energy of the penetrators was consumed for the microcrack formation due to interfacial debonding and cleavage fracture of tungsten particles. In order to improve penetration performance as well as to achieve selfsharpening by applying MA, conditions of MA and sintering process should be established so that alloy densification, particle refinement, and contiguity reduction can be simultaneously achieved.  相似文献   

17.
The formation of adiabatic shear band instabilities in a pearlitic 4340 steel using a dynamic punch test has been studied. The dynamic punch-impact test produced white-etching adiabatic shear bands. The average strain of 0.5 was sufficient to produce adiabatic shear bands in this steel at an average strain rate of 18,000 s−1. Nanohardness variations found across the adiabatic shear band are thought to be caused by the fragmentation and spheroidization of the Fe3C and the overall deformation and work hardening of the pearlitic microstructure. The cracks formed at the termination of the adiabatic shear band caused the sample to fracture in a ductile mode.  相似文献   

18.
The evolution of adiabatic shear localization in an annealed AISI 316L stainless steel has been investigated and was reported in Part I of this paper (Met. Trans. A, 2006, Vol. 37A, pp. 2435–446). In the present research (Part II), a comprehensive transmission electron microscopy (TEM) examination was conducted on the microstructural evolution of shear localization in this material at different loading stages. The TEM results indicate that elongated subgrain laths and an avalanche of dislocation cells are the major characteristics in an initiated band. Development of the substructures within shear bands is controlled by dynamic recovery and continuous dynamic recrystallization. The core of shear bands was found to consist of fine equiaxed subgrains. Well-developed shear bands are filled with a mixture of equiaxed, rectangular, and elongated subgrains. The equiaxed subgrains, with a typical size less than 100 nm, are postulated to result from either the breakdown and splitting of subgrain laths or the reconstruction of subcells.  相似文献   

19.
The influences of the hot extrusion process on the microstructure, corrosion behavior and corrosion mechanism for Mg-Y magnesium alloy were studied by means of the microstructure observation, weight loss test, electrochemical test and corrosion morphology test. The results showed that with increasing of the extrusion ratio, the shear flow line on the vertical section of the extruded alloy increased, the shear bands parallel lines became more clearly visible, and a large number of fine equiaxed grains distributed in parallel with the flow lines. The open circuit potential had a certain degree of improvement after extrusion, the open circuit potential increased with increment of extrusion ratio, and the corrosion potential of the vertical section was higher than that of the same alloy in the same compression ratio. The shift rate of the corrosion potential relatively became larger with increasing of the extrusion ratio, and the cathode corrosion current corresponding to the branch migration shifted to the positive direction. The high frequency capacitive arc increased with increment of the extrusion ratio, and the radius of capacitive arc of the vertical section was slightly larger than that of the transverse section. The corrosion morphologies of Mg-0.25 Y alloy were uniform corrosion, and the corrosion morphologies of Mg-(2.5, 5, 8 and 15) were the pitting corrosion and the small range, deep depth localized corrosion.  相似文献   

20.
The effect of the tungsten particle shape on the dynamic deformation and fracture behavior of tungsten heavy alloys was investigated. Dynamic torsional tests were conducted using a torsional Kolsky bar for five alloys, one of which was fabricated by the double-cycled sintering process, and then the test data were compared via microstructures, mechanical properties, adiabatic shear banding, and fracture mode. The dynamic torsional test results indicated that in the double-sintered tungsten alloy whose tungsten particles were very coarse and irregularly shaped, cleavage fracture occurred in the central area of the gage section with little shear deformation, whereas shear deformation was concentrated in the central area of the gage section in the other alloys. The deformation and fracture behavior of the double-sintered alloy correlated well with the observation of the impacted penetrator specimen and the in situ fracture test results, i.e., microcrack initiation at coarse tungsten particles and cleavage crack propagation through tungsten particles. These findings suggested that the cleavage fracture mode would be beneficial for the self-sharpening effect, and, thus, the improvement of the penetration performance of the double-sintered tungsten heavy alloy would be expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号