首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We report a novel approach in fabricating high-performance enhancement mode (E-mode) AlGaN/GaN HEMTs. The fabrication technique is based on fluoride-based plasma treatment of the gate region in AlGaN/GaN HEMTs and post-gate rapid thermal annealing with an annealing temperature lower than 500/spl deg/C. Starting with a conventional depletion-mode HEMT sample, we found that fluoride-based plasma treatment can effectively shift the threshold voltage from -4.0 to 0.9 V. Most importantly, a zero transconductance (g/sub m/) was obtained at V/sub gs/=0 V, demonstrating for the first time true E-mode operation in an AlGaN/GaN HEMT. At V/sub gs/=0 V, the off-state drain leakage current is 28 /spl mu/A/mm at a drain-source bias of 6 V. The fabricated E-mode AlGaN/GaN HEMTs with 1 /spl mu/m-long gate exhibit a maximum drain current density of 310 mA/mm, a peak g/sub m/ of 148 mS/mm, a current gain cutoff frequency f/sub T/ of 10.1 GHz and a maximum oscillation frequency f/sub max/ of 34.3 GHz.  相似文献   

2.
AlGaN/GaN HEMTs on SiC with f/sub T/ of over 120 GHz   总被引:1,自引:0,他引:1  
AlGaN/GaN high electron mobility transistors (HEMTs) grown on semi-insulating SiC substrates with a 0.12 /spl mu/m gate length have been fabricated. These 0.12-/spl mu/m gate-length devices exhibited maximum drain current density as high as 1.23 A/mm and peak extrinsic transconductance of 314 mS/mm. The threshold voltage was -5.2 V. A unity current gain cutoff frequency (f/sub T/) of 121 GHz and maximum frequency of oscillation (f/sub max/) of 162 GHz were measured on these devices. These f/sub T/ and f/sub max/ values are the highest ever reported values for GaN-based HEMTs.  相似文献   

3.
AlGaN-GaN high-electron mobility transistors (HEMTs) based on high-resistivity silicon substrate with a 0.17-/spl mu/m T-shape gate length are fabricated. The device exhibits a high drain current density of 550 mA/mm at V/sub GS/=1 V and V/sub DS/=10 V with an intrinsic transconductance (g/sub m/) of 215 mS/mm. A unity current gain cutoff frequency (f/sub t/) of 46 GHz and a maximum oscillation frequency (f/sub max/) of 92 GHz are measured at V/sub DS/=10 V and I/sub DS/=171 mA/mm. The radio-frequency microwave noise performance of the device is obtained at 10 GHz for different drain currents. At V/sub DS/=10 V and I/sub DS/=92 mA/mm, the device exhibits a minimum-noise figure (NF/sub min/) of 1.1 dB and an associated gain (G/sub ass/) of 12 dB. To our knowledge, these results are the best f/sub t/, f/sub max/ and microwave noise performance ever reported on GaN HEMT grown on Silicon substrate.  相似文献   

4.
High-performance AlGaN/GaN high electron-mobility transistors with 0.18-/spl mu/m gate length have been fabricated on a sapphire substrate. The devices exhibited an extrinsic transconductance of 212 mS/mm, a unity current gain cutoff frequency (f/sub T/) of 101 GHz, and a maximum oscillation frequency (f/sub MAX/) of 140 GHz. At V/sub ds/=4 V and I/sub ds/=39.4 mA/mm, the devices exhibited a minimum noise figure (NF/sub min/) of 0.48 dB and an associated gain (Ga) of 11.16 dB at 12 GHz. Also, at a fixed drain bias of 4 V with the drain current swept, the lowest NFmin of 0.48 dB at 12 GHz was obtained at I/sub ds/=40 mA/mm, and a peak G/sub a/ of 11.71 dB at 12 GHz was obtained at I/sub ds/=60 mA/mm. With the drain current held at 40 mA/mm and drain bias swept, the NF/sub min/,, increased almost linearly with the increase of drain bias. Meanwhile, the Ga values decreased linearly with the increase of drain bias. At a fixed bias condition (V/sub ds/=4 V and I/sub ds/=40 mA/mm), the NF/sub min/ values at 12 GHz increased from 0.32 dB at -55/spl deg/C to 2.78 dB at 200/spl deg/C. To our knowledge, these data represent the highest f/sub T/ and f/sub MAX/, and the best microwave noise performance of any GaN-based FETs on sapphire substrates ever reported.  相似文献   

5.
AlGaN-GaN HEMTs on Si with power density performance of 1.9 W/mm at 10 GHz   总被引:1,自引:0,他引:1  
AlGaN-GaN high electron mobility transistors (HEMTs) on silicon substrate are fabricated. The device with a gate length of 0.3-/spl mu/m and a total gate periphery of 300 /spl mu/m, exhibits a maximum drain current density of 925 mA/mm at V/sub GS/=0 V and V/sub DS/=5 V with an extrinsic transconductance (g/sub m/) of about 250 mS/mm. At 10 GHz, an output power density of 1.9 W/mm associated to a power-added efficiency of 18% and a linear gain of 16 dB are achieved at a drain bias of 30 V. To our knowledge, these power results represent the highest output power density ever reported at this frequency on GaN HEMT grown on silicon substrates.  相似文献   

6.
Al/sub 0.4/Ga/sub 0.6/N/GaN heterostructure field-effect transistors (HFETs) with an AlGaN barrier thickness of 8 nm and a gate length (L/sub G/) of 0.06-0.2 /spl mu/m were fabricated on a sapphire substrate. We employed two novel techniques, which were thin, high-Al-composition AlGaN barrier layers and SiN gate-insulating, passivation layers formed by catalytic chemical vapor deposition, to enhance high-frequency device characteristics by suppressing the short channel effect. The HFETs with L/sub G/=0.06-0.2 /spl mu/m had a maximum drain current density of 1.17-1.24 A/mm at a gate bias of +1.0 V and a peak extrinsic transconductance of 305-417 mS/mm. The current-gain cutoff frequency (f/sub T/) was 163 GHz, which is the highest value to have been reported for GaN HFETs. The maximum oscillation frequency (f/sub max/) was also high, and its value derived from the maximum stable gain or unilateral gain was 192 or 163 GHz, respectively.  相似文献   

7.
High-electron mobility transistors (HEMTs) were fabricated from heterostructures consisting of undoped In/sub 0.2/Al/sub 0.8/N barrier and GaN channel layers grown by metal-organic vapor phase epitaxy on (0001) sapphire substrates. The polarization-induced two-dimensional electron gas (2DEG) density and mobility at the In/sub 0.2/Al/sub 0.8/N/GaN heterojunction were 2/spl times/10/sup 13/ cm/sup -2/ and 260 cm/sup 2/V/sup -1/s/sup -1/, respectively. A tradeoff was determined for the annealing temperature of Ti/Al/Ni/Au ohmic contacts in order to achieve a low contact resistance (/spl rho//sub C/=2.4/spl times/10/sup -5/ /spl Omega//spl middot/cm/sup 2/) without degradation of the channels sheet resistance. Schottky barrier heights were 0.63 and 0.84 eV for Ni- and Pt-based contacts, respectively. The obtained dc parameters of 1-/spl mu/m gate-length HEMT were 0.64 A/mm drain current at V/sub GS/=3 V and 122 mS/mm transconductance, respectively. An HEMT analytical model was used to identify the effects of various material and device parameters on the InAlN/GaN HEMT performance. It is concluded that the increase in the channel mobility is urgently needed in order to benefit from the high 2DEG density.  相似文献   

8.
An AlGaN/GaN recessed-gate MOSHEMT was fabricated on a sapphire substrate. The device, which has a gate length of 1 μm and a source-drain distance of 4 μm, exhibits a maximum drain current density of 684 mA/mm at Vgs = 4 V with an extrinsic transconductance of 219 mS/mm. This is 24.3% higher than the transconductance of conventional AlGaN/GaN HEMTs. The cut-off frequency and the maximum frequency of oscillation are 9.2 GHz and 14.1 GHz, respectively. Furthermore, the gate leakage current is two orders of magnitude lower than for the conventional Schottky contact device.  相似文献   

9.
Self-aligned AlGaN/GaN high electron mobility transistors grown on semiinsulating SiC substrates with a 0.25 mum gate-length were fabricated using a single-step ohmic process. Our recently developed Mo/Al/Mo/Au-based ohmic contact requiring annealing temperatures between 500degC and 600degC was utilized. Ohmic contact resistances between 0.35-0.6 Omega ldr mm were achieved. These 0.25 mum gate-length devices exhibited drain current density as high as 1.05 A/mm at a gate bias of 0 V and a drain bias of 10 V. A knee voltage of less than 2 V and a peak extrinsic transconductance (gm ) of 321 mS/mm were measured. For their microwave characteristics, a unity gain cutoff frequency (fT ) of 82 GHz and maximum frequency of oscillation (f max) of 103 GHz were measured.  相似文献   

10.
Performance of the AlGaN HEMT structure with a gate extension   总被引:5,自引:0,他引:5  
The microwave performance of AlGaN/GaN HEMTs at large drain bias is reported. The device structures were grown by organometallic vapor phase epitaxy on SiC substrates with a channel sheet resistance less than 280 ohms/square. The breakdown voltage of the HEMT was improved by the composite gate structure consisting of a 0.35 /spl mu/m long silicon nitride window with a 0.18 /spl mu/m long metal overhang on either side. This produced an metal-insulator-semiconductor (MIS) gate extension toward the drain with the insulator, silicon nitride, approximately 40-nm-thick. Transistors with a 150 /spl mu/m total gate width have demonstrated a continuous wave (CW) 10 GHz output power density and power added efficiency of 16.5 W/mm and 47%, respectively when operated at 60 V drain bias. Small-signal measurements yielded an f/sub T/ and f/sub max/ of 25.7 GHz and 48.8 GHz respectively. Maximum drain current was 1.3 A/mm at +4 V on the gate, with a knee voltage of /spl sim/5 V. This brief demonstrates that AlGaN/GaN HEMTs with an optimized gate structure can extend the device operation to higher drain biases yielding higher power levels and efficiencies than have previously been observed.  相似文献   

11.
We report the DC and RF characteristics of AlN/GaN high electron mobility transistors(HEMTs) with the gate length of 100 nm on sapphire substrates. The device exhibits a maximum drain current density of 1.29 A/mm and a peak transconductance of 440 m S/mm. A current gain cutoff frequency and a maximum oscillation frequency of 119 GHz and 155 GHz have been obtained, respectively. Furthermore, the large signal load pull characteristics of the AlN/GaN HEMTs were measured at 29 GHz. An output power density of 429 m W/mm has been demonstrated at a drain bias of 10 V. To the authors’ best knowledge, this is the earliest demonstration of power density at the Ka band for Al N/Ga N HEMTs in the domestic, and also a high frequency of load-pull measurements for Al N/Ga N HEMTs.  相似文献   

12.
We report an AlGaN/GaN/InGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with high-mobility two-dimensional electron gas (2-DEG) and reduced buffer leakage. The device features a 3-nm thin In/sub x/Ga/sub 1-x/N(x=0.1) layer inserted into the conventional AlGaN/GaN HEMT structure. Assisted by the InGaN layers polarization field that is opposite to that in the AlGaN layer, an additional potential barrier is introduced between the 2-DEG channel and buffer, leading to enhanced carrier confinement and improved buffer isolation. For a sample grown on sapphire substrate with MOCVD-grown GaN buffer, a 2-DEG mobility of around 1300 cm/sup 2//V/spl middot/s and a sheet resistance of 420 /spl Omega//sq were obtained on this new DH-HEMT structure at room temperature. A peak transconductance of 230 mS/mm, a peak current gain cutoff frequency (f/sub T/) of 14.5 GHz, and a peak power gain cutoff frequency (f/sub max/) of 45.4 GHz were achieved on a 1/spl times/100 /spl mu/m device. The off-state source-drain leakage current is as low as /spl sim/5 /spl mu/ A/mm at V/sub DS/=10 V. For the devices on sapphire substrate, maximum power density of 3.4 W/mm and PAE of 41% were obtained at 2 GHz.  相似文献   

13.
采用电感耦合等离子体(ICP)刻蚀系统,研究了氧等离子体表面处理对AlGaN/GaN HEMT欧姆接触电阻的影响。利用能量色散X射线光谱仪、光致发光谱和原子力显微镜以及电学测试设备对处理前后样品进行表征分析。结果表明,在最佳的氧等离子体处理条件(ICP功率250 W,射频功率60 W,压强0.8 Pa,氧气流量30 cm3/min,时间5 min)下,欧姆接触电阻为0.41Ω·mm,比参照样品接触电阻降低了约69%。分析认为经过氧等离子体处理后,在近表面处产生了一定数量的N空位缺陷,这些N空位表现为浅能级施主掺杂,有利于欧姆接触的形成。通过采用氧等离子体表面处理工艺制备的AlGaN/GaN HEMT,在+2 V的栅极偏压下获得了0.77 A/mm的最大漏极饱和电流。  相似文献   

14.
The dc and RF characteristics of Si/SiGe n-MODFETs with buried p-well doping incorporated by ion implantation are reported. At a drain-to-source biasV/sub ds/ of +1 V devices with 140-nm gate length had peak transconductance g/sub m/ of 450 mS/mm, and maximum dc voltage gain A/sub v/ of 20. These devices also had "off-state" drain current I/sub off/ of 0.15 mA/mm at V/sub g/=-0.5 V. Control devices without p-well doping had A/sub v/=8.1 and I/sub off/=13 mA/mm under the same bias conditions. MODFETs with p-well doping had f/sub T/ as high as 72 GHz at V/sub ds/=+1.2 V. These devices also achieved f/sub T/ of 30 GHz at a drain current, I/sub d/, of only 9.8 mA/mm, compared to I/sub d/=30 mA/mm for previously published MODFETs with no p-well doping and similar peak f/sub T/.  相似文献   

15.
报道了一种利用原子层淀积(ALD)生长超薄(3.5nm)Al2O3为栅介质的高性能AlGaN/GaN金属氧化物半导体高电子迁移率晶体管(MOS-HEMT).新型AlGaN/GaN MOS-HEMT器件栅长1μm,栅宽120μm,栅压为+3.0V时最大饱和输出电流达到720mA/mm,最大跨导达到130mS/mm,开启电压保持在-5.0V,特征频率和最高振荡频率分别为10.1和30.8GHz.  相似文献   

16.
正We studied the performance of AlGaN/GaN double heterojunction high electron mobility transistors (DH-HEMTs) with an AlGaN buffer layer,which leads to a higher potential barrier at the backside of the twodimensional electron gas channel and better carrier confinement.This,remarkably,reduces the drain leakage current and improves the device breakdown voltage.The breakdown voltage of AlGaN/GaN double heterojunction HEMTs (~ 100 V) was significantly improved compared to that of conventional AlGaN/GaN HEMTs(~50 V) for the device with gate dimensions of 0.5 x 100μm and a gate-drain distance of 1μm.The DH-HEMTs also demonstrated a maximum output power of 7.78 W/mm,a maximum power-added efficiency of 62.3%and a linear gain of 23 dB at the drain supply voltage of 35 V at 4 GHz.  相似文献   

17.
成功研制出蓝宝石衬底的槽栅增强型AlGaN/GaN HEMT.栅长1.2μm.源漏间距4μm,槽深15nm的器件在3V栅压下饱和电流达到332mA/mm,最大跨导为221mS/mm,阈值电压为0.57V,ft和,fmax分别为5.2和9.3GHz.比较刎蚀前后的肖特基,Ⅰ-Ⅴ特性,证实了槽栅刻蚀过程中非有意淀积介质层的存在.深入研究了增强型器件亚阈特性和频率特性.  相似文献   

18.
In order to improve the electrical characteristics of AlGaN-GaN heterostructures for applications in high electron mobility transistors (HEMTs), high-quality AlGaN-GaN was grown by way of metal-organic chemical vapor deposition on sapphire. We applied isoelectronic Al doping into the GaN-channel layers of modified AlGaN-Al-doped GaN channel-GaN heterostructures. We then compared the electrical performance of the fabricated heterostructures with those of conventional AlGaN-GaN heterostructures. The AlGaN-GaN HEMTs that were fabricated achieved power densities of up to 4.2 W/mm, some of the highest values ever reported for 0.25-/spl mu/m gate length AlGaN-GaN HEMTs. These devices exhibited a maximum drain current density of 1370 mA/mm, a high transconductance of 230 mS/mm, a short-circuit current gain cutoff frequency (f/sub T/) of 67 GHz, and a maximum frequency of oscillation (f/sub max/) of 102 GHz.  相似文献   

19.
A high breakdown voltage and a high turn-on voltage (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P/InGaAs quasi-enhancement-mode (E-mode) pseudomorphic HEMT (pHEMTs) with field-plate (FP) process is reported for the first time. Between gate and drain terminal, the transistor has a FP metal of 1 /spl mu/m, which is connected to a source terminal. The fabricated 0.5/spl times/150 /spl mu/m/sup 2/ device can be operated with gate voltage up to 1.6 V owing to its high Schottky turn-on voltage (V/sub ON/=0.85 V), which corresponds to a high drain-to-source current (I/sub ds/) of 420 mA/mm when drain-to-source voltage (V/sub ds/) is 3.5 V. By adopting the FP technology and large barrier height (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P layer design, the device achieved a high breakdown voltage of -47 V. The measured maximum transconductance, current gain cutoff frequency and maximum oscillation frequency are 370 mS/mm, 22 GHz , and 85 GHz, respectively. Under 5.2-GHz operation, a 15.2 dBm (220 mW/mm) and a 17.8 dBm (405 mW/mm) saturated output power can be achieved when drain voltage are 3.5 and 20 V. These characteristics demonstrate that the field-plated (Al/sub 0.3/Ga/sub 0.7/)/sub 0.5/In/sub 0.5/P E-mode pHEMTs have great potential for microwave power device applications.  相似文献   

20.
We have grown high quality GaN layers on (1 1 1)-oriented silicon substrate using a two-step growth method and fabricated high-performance normally-off n-channel GaN Schottky-barrier MOSFET (SB-MOSFET). Indium-tin-oxide (ITO) was used as Schottky-barrier contact for source and drain (S/D) because the work function of ITO is close to the electron affinity of GaN. Due to enhanced crystalline quality and reduced surface roughness of GaN layer grown by two-step process, the fabricated device exhibited much improved performances: sufficiently high threshold voltage of 3.75 V, subthreshold slope of 171 mV/dec, low specific on-resistance of 9.98 mΩ cm2, and very high field-effect mobility of 271 cm2/V s. This is the highest mobility value among the GaN MOSFETs ever reported so far.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号