首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The high-temperature thermal stability of the ultrafine-grained (UFG) microstructures in low stacking fault energy silver was studied by differential scanning calorimetry (DSC). The UFG microstructures were achieved by equal-channel angular pressing (ECAP) and high-pressure torsion (HPT) at room temperature (RT). The defect structure in the as-processed samples was examined by electron microscopy and X-ray line profile analysis. The stored energy calculated from the defect densities was compared to the heat released during DSC. The sum of the energies stored in grain boundaries and dislocations in the ECAP-processed samples agreed with the heat released experimentally within the experimental error. The temperature of the DSC peak maximum decreased while the released heat increased with increasing numbers of ECAP passes. The released heat for the specimen processed by one revolution of HPT was much smaller than after 4–8 passes of ECAP despite the 2 times larger dislocation density measured by X-ray line profile analysis. This dichotomy was caused by the heterogeneous sandwich-like microstructure of the HPT-processed disk: about 175 μm wide surface layers on both sides of the disk exhibited a UFG microstructure while the internal part was recrystallized, thereby yielding a relatively small released heat.  相似文献   

2.
The low-cycle tension–compression fatigue tests were performed at ambient temperature on ultrafine grained AZ31 magnesium alloy processed by equal channel angular pressing. All samples exhibited cyclic softening, and the softening effect increased with increasing total strain amplitude. Observations by optical microscope revealed that pronounced recrystallization occurred, and the direction of larger axis of recrystallized grains was nearly 45° with respect to the loading axis. Local grain coarsening leads to the formation of dense shear localization, while line-like damage traces remain in fine grains. A model is proposed to account for the recrystallization, based on the characteristic distribution of defects introduced by equal channel angular pressing.  相似文献   

3.
The high temperature thermal stability of the ultrafine-grained (UFG) microstructures in low stacking-fault-energy silver was studied by differential scanning calorimetry (DSC). The UFG microstructures in two samples having purity levels of 99.995 and 99.99 at.% were achieved by four passes of equal-channel angular pressing at room temperature. The defect structure was studied by electron microscopy, X-ray line profile analysis, and positron annihilation spectroscopy before and after the exothermic DSC peak related to recovery and recrystallization. The heat released in the DSC peak was correlated to the change of defect structure during annealing. It was found for both compositions that a considerable fraction of stored energy (~15–20 %) was retained in the samples even after the DSC peak due to the remaining UFG regions and a large density of small dislocation loops in the recrystallized volumes. The larger impurity level in Ag yielded a higher temperature of recrystallization and a lower released heat. The latter observation is explained by the much lower vacancy concentration before the DSC peak which is attributed to the segregation of dopants at grain boundaries resulting in a smaller free volume in the interfaces.  相似文献   

4.
This study is focused on enhancement of the fatigue properties of Ultrafine Grain titanium (UFG Ti) processed by ECAP-Conform and subsequent drawing. By examining specific combinations of ECAP-Conform and drawing, we have shown that the size and shape of grains, dislocation substructure formation, and grain boundary state are among the main microstructural parameters that determine the strength and ductility in UFG Ti. The increase in fatigue resistance of UFG Ti to 610 MPa was attributed to the high values of strength and ductility (UTS = 1290 MPa with elongation = 13 %) This value is comparable with the fatigue resistance of the titanium alloy Ti–6Al–4V.  相似文献   

5.
Processing by severe plastic deformation (SPD) has been developed extensively over the last two decades in order to produce ultrafine-grained (UFG) materials having submicrometre or nanometre grain sizes. An important material property for UFG materials is good wear resistance so that they may be used in a range of structural applications. An examination of the published data shows that only limited reports are available to date on the wear behaviour of SPD-processed materials and, furthermore, many of these results appear to be conflicting. The correlation of hardness and wear is limited because the wear property is a system property that in practice is influenced by a range of factors. Accordingly, this review is designed to examine recent reports related to the wear resistance of materials processed by SPD with particular emphasis on alloys processed using equal-channel angular pressing (ECAP), high-pressure torsion (HPT) and accumulative roll-bonding (ARB).  相似文献   

6.
Extruded AZ31 alloy was processed by equal channel angular pressing (ECAP) up to 12 passes at 180 °C following route Bc, i.e. rotating the sample 90° between individual passes. Microstructure evolution was investigated using EBSD and TEM, as a function of strain imposed by ECAP. The first ECAP pass resulted in the formation of a new texture component which relates to the bimodal grain structure observed in this specimen. The grains larger than 10 μm show the orientation changes corresponding to the ECAP shear, which is characterised by the rotation of the basal poles by approximately 40° from the initial orientation. The fine grains with the average size of 1 μm maintain the initial orientation. The character of the bimodal grain structure and the distinct texture components between large and small grains remained unchanged up to 4 ECAP passes. Further ECAP pressing to 8 and 12 passes leads to a grain refinement through the whole sample volume and the orientation changes of all grains corresponding to the ECAP shear.  相似文献   

7.
8.
A grade 2 pure Ti was processed by high-pressure torsion (HPT) under 3.0 GPa for 10 revolutions to achieve an improved strength. Wear tests revealed that HPT only slightly improved the wear resistance of pure Ti. Subsequently, a TiN coating with a thickness of 2.5 μm was deposited on different Ti substrates to improve the wear resistance. Both indentation and scratch testing demonstrated a much improved load-bearing capacity when ultrafine-grained Ti was chosen as the substrate compared with coarse-grained Ti. All results indicate that pure Ti processed by HPT, when combined with a subsequent coating, represents a good candidate material for bio-implant applications.  相似文献   

9.
High-pressure torsion (HPT) is an attractive processing method in severe plastic deformation techniques involving the application of high compressive pressure with concurrent torsional straining. Excellent grain refinement is anticipated when using this technique to average grain sizes of the submicrometer or even nanometer ranges. Because of the significant microstructural changes during processing, there are numerous reports showing evolution in local hardness toward homogeneity throughout a disk diameter with increasing numbers of revolutions. The achieved hardness after HPT is mostly much higher than that in the as-received condition because of exceptional grain refinement although there are a limited number of metals and alloys showing softening or weakening after HPT processing. This paper was initiated to review recent discoveries in the experimental results on hardness evolution toward homogeneity during HPT processing and discuss the different models of hardness developments with respect to imposed equivalent strain by HPT processing for a range of metals and alloys. Moreover, recent results of hardness homogeneity and heterogeneity through thicknesses of the processed disks are discussed toward a complete understanding of hardness evolution in the UFG metals processed by HPT.  相似文献   

10.
A grade 2 commercially pure (CP) titanium was processed by high-pressure torsion (HPT) at pressures of 3.0 and 6.0 GPa in order to achieve improved strengths. The microhardness values for these Ti samples were plotted against the imposed strain, and the plots show that a higher saturation microhardness of 320 Hv is achieved for the sample processed at 6.0 GPa compared to a microhardness of 305 Hv when using a pressure of 3.0 GPa. The omega ω-phase has been reported in some earlier HPT investigations of pure titanium, but it was not detected in this investigation even after processing at 6.0 GPa. The absence of the ω-phase is attributed to the relatively high level of oxygen (0.25 wt%) in these CP titanium samples. The higher saturation hardness for the 6.0 GPa sample is consistent with the smaller average grain size of ~105 ± 12 nm compared with the measured grain size of ~130 ± 18 nm after processing with an imposed pressure of 3.0 GPa.  相似文献   

11.
Tensile tests and strain-rate jump tests were carried out at several temperatures below room temperature on Cu processed by accumulative roll-bonding (ARB). The temperature dependences of the flow stress and the activation volume were determined. In contrast to conventional coarse-grained materials where the activation volume increases with increasing temperature, the ARB processed copper by 8 cycles with ultrafine-grains showed inverse temperature dependence of activation volume, i.e., decreased activation volume with increasing temperature. This inverse temperature dependence of the activation volume is discussed in terms of thermally activated dislocation bow-out from grain-boundaries.  相似文献   

12.
Using the high pressure torsion (HPT) deformation method the medium carbon steel (AISI 1045) was the experimental material used to conduct the deformation process. The torsion deformation experiment was performed at increased temperature of 400 °C. The influence of deformation processing parameters, resolved shear strain γ (number of turns N = 1–6) and applied pressure p (constant pressure of 7 GPa), was evaluated by microstructure analysis and mechanical properties. The strength behaviour was assessed by microhardness measurements across the disc to detect the positional hardening, by tensile tests and in situ measured torque. In situ measurement of torque during deformation allows characterizing the changes in mechanical properties due to the large shear deformation developed across the disc. To obtain absolute values of strength the ultimate tensile strength was measured in radial direction with respect to the deformed sample. From each deformed disc two sub-sized tensile test specimens with gauge length of 2.5 mm were machined. The tensile strength in samples increased markedly with the number of turns. The hardness measured at disc edge gradually increases as straining increases until it saturates after 2–3 turns. However, the hardness values at edge were different from those measured in disc centre and for applied straining no saturation was reached across the disc. The SEM and TEM investigations were carried out to analyze the fine microstructure evolution regarding the strain introduced. To follow the difference in strain distribution across the deformed disc the microstructure analysis was performed at edge and central site of the disc in order to evaluate the effect of the strain distribution. TEM investigation confirmed the increasing misorientation even in very small grains, the fragmentation and dissolution of the cementite lamellae, (diffuse cementite/ferrite boundaries), the alignment of the fragments to the shear plane with increasing deformation. Indistinct deformation of ferrite and preserved cementite lamellae morphology were found at the centre of the disc.  相似文献   

13.
Equal-channel angular pressing (ECAP) has been used to refine the grain size of commercially pure (CP) titanium as well as other metals and alloys. CP-Ti is usually processed at about 400 degrees C because it lacks sufficient ductility at lower temperature. The warm processing temperature limits the ability of the ECAP technique to improve the strength of CP-Ti. We have employed cold deformation following warm ECAP to further improve the strength of CP-Ti. Ti billets were first processed for eight passes via ECAP route Bc, with a clockwise rotation of 90 degrees between adjacent passes. The grain size obtained by ECAP alone is about 260 nm. The billets were further processed by cold deformation (cold rolling) to increase the crystalline defects such as dislocations. The strength of pure Ti was improved from 380 to around 1000 MPa by the two-step process. This article reports the microstructures, microhardness, tensile properties, and thermal stability of these Ti billets processed by a combination of ECAP and cold deformation.  相似文献   

14.
Nanostructured materials have been widely studied due to the improvement of their mechanical properties comparing to those of coarse grain materials. The present work intended to analyze the microstructure and microhardness of Zr-2.5Nb processed by high-pressure torsion (HPT), one of the severe plastic deformation techniques. The deformations were carried out at room temperature using a pressure of 5?GPa and 5 anvil turns. Vickers indentation was used to evaluate the microhardness of the samples. Transmission electron microscopy and X-ray diffraction were used to analyze the microstructure. The results showed a significant refinement from the initial microstructure achieving nanometric grain size around 50?nm and phase transformation α?→?ω?+?βI induced by shear. The Vickers microhardness values of the material submitted to HPT technique were significantly higher than those of non-deformed material. Also, HPT procedure resulted in a huge grain refinement of the material and in phase transformation.  相似文献   

15.
Commercial MgAlZn alloy AZ31 was processed by two techniques of severe plastic deformation (SPD)—extrusion followed by equal channel angular pressing (EX-ECAP), and high pressure torsion (HPT). Processing by ECAP was conducted at elevated temperature of 180 °C for 1–12 passes following route BC. HPT was applied at room temperature, and the specimens of the diameter of 19 mm with different number of turns (N = ¼ ? 15) were prepared. Mechanical properties and grain fragmentation with strain due to EX-ECAP and HPT were investigated by Vickers microhardness measurements and transmission electron microscopy, respectively. Variations in dislocation density were investigated by positron annihilation spectroscopy. Differences in microhardness, grain refinement and dislocation density evolution resulting from principal differences of straining were found in the specimens. EX-ECAP resulted in homogeneous microstructure throughout the specimen's cross section as early as after four passes. On the other hand, laterally inhomogeneous microstructure with gradual reduction of grain sizes from the centre towards the periphery of the disk was observed in specimens after HPT. This microstructure and microhardness inhomogeneities were continuously smeared out and almost homogeneous ultrafine-grained structure was observed in specimen subjected to 15 HPT turns. Variations in mechanical properties and dislocation density evolution were compared in conditions corresponding to the same equivalent strain imposed by both techniques of SPD.  相似文献   

16.
17.
This study was conducted to clarify the effects of grain boundaries and precipitates on room-temperature hydrogen transport in two types of austenitic stainless steels with ultrafine-grained structures produced by high-pressure torsion (HPT) and subsequent annealing. The grains in the Fe-25Ni-15Cr (in mass%) alloy containing Ti and the Fe-25Cr-20Ni alloy were refined by the HPT-processing to ∼150 and ∼85 nm, respectively. The high-temperature annealing after the HPT processing led to the precipitation of η-Ni3Ti for the former and σ-FeCr for the latter. In the HPT-processed specimens, hydrogen diffusivity was enhanced through short-circuit diffusion because of the increased population of grain boundaries in comparison with the increased opportunity of hydrogen trapping on dislocations. As for the post-HPT-annealed specimens having the precipitates, the hydrogen diffusion was hindered by the hydrogen trapping on η-Ni3Ti precipitates, but was not affected by σ-FeCr precipitation. This depends on the affinity between hydrogen and constituting elements.  相似文献   

18.
To gain insight into the ageing behavior of ultrafine grain(UFG)structure,the precipitation phenom-ena and microstructural evolutions of Mg-6Zn-1Y-0.4Ce-0.5 Zr(wt.%)alloy processed by sliding friction treatment(SFT)were systematically studied using hardness texting,transmission electron microscopy(TEM)equipped with high-angle annular dark-field scanning(HADDF-STEM),X-ray diffraction(XRD)and XRD line broadening analysis.The microhardness of the SFT-processed(SFTed)sample initially decreases from 109.6 HV to 104.8 HV at ageing for 8 h,and then increases to the peak-ageing point of 115.4 HV at 16 h.Subsequently,it enters the over-aged period.The un-SFTed sample,as the counterpart,follows a regular ageing behavior that increases from 89.9 HV to 99.6 HV when ageing for 12 h,and then drops.A multi-mechanistic model is established to describe the strengthening due to grain refinement,disloca-tion accumulation,precipitation etc.The analysis reveals that the temperature sensitive UFG structure has an obvious grain coarsening effect,which arouses the soft phenomenon in the early ageing stage.But precipitation hardening provides an excellent hardness enhancement for overcoming the negative influ-ence and helping to reach the peak-aged point.In our microstructural observations,a lot of equilibrium ultrafine MgZn2 precipitates precipitate along dislocations because defects can provide the favorable conditions for the migration and segregation of solute atoms.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号