共查询到13条相似文献,搜索用时 6 毫秒
1.
A study of energy transfer of Er^3+/Nd^3+ codoped tellurite glasses was presented. By Nd^3+ co-doping, both the Er^3+ green emission corresponding to the Er^3+: (^4S3/2, ^2H11/2)→^4I15/2 transitions and the red emission corresponding to the Er^3+: ^4F9/2→^4I15/2 transitions were quenched. The energy transfer mechanism between Er^3+ and Nd^3+ was discussed based on their energy level characteristics. The interaction parameters, CO-A, for the energy transfer processes from Er^3+ to Nd^3+ in tellurites glass were calculated. Finally, the resonant transfer Er^3+: ^4I9/2→Nd^3+: (^4F5/2, ^2H9/2) was proposed to be the most probable microscopic process to occur in contrast with the other processes. 相似文献
2.
Luminescence of Er^3+ in Oxyfluoride Transparent Glass-Ceramics 总被引:1,自引:0,他引:1
Zhengda Pan Akira Ueda Steven H Morgan Richard Mu 《中国稀土学报(英文版)》2006,24(6):699-705
Erbium doped silicate, germanate, and tellurium-germanate oxyfluoride glasses were prepared in a bulk form. Through appropriate heat treatment of the as-prepared glasses, transparent glass-ceramics (TGCs) were obtained with the formation of β-PbF2∶Er3 nanocrystals in the glass matrix were confirmed by X-ray diffraction. Well-defined diffraction peaks were observed in the samples after heat-treatment. The average crystal diameter of these precipitated crystals from full-width at half-maximum (FWHM) of the diffraction peak was estimated to be between 8 and 13 nm. Optical absorption, photoluminescence, and upconversion luminescence were measured on as-prepared glass and glass-ceramics. Luminescence spectra in the TGC samples revealed well-resolved, sharp stark-splitting peaks, which indicates that a majority of Er3 ions has been incorporated into the crystalline phase of the nanocrystals. The intensity of the visible and near infrared luminescence mostly increases in TSG compared to that in the as-prepared glass. In 1.53 μm absorption and emission bands, the maximum absorption peak is blue-shifted from 1531 to 1507 nm, whereas the maximum emission peak is red-shifted from 1535 to 1543 nm in TGC, as compared with that in glass. The bandwidth at half-maximum (BWHM) of the emission band is significantly broader in TGC than in glass, which is beneficial to the erbium-doped fiber amplifier (EDFA). Upconversion luminescence was measured using 800 nm near-infrared light excitation. Drastically increased upconversion luminescence was observed from the TGC as compared to that from their corresponding as-prepared glasses. In addition to a strong green emission centered at 545 nm because of 4S3/2→4I15/2 transition and a weaker red emission centered at 662 nm because of 4F9/2→4I15/2 transition, generally seen from the Er3 doped glasses, two violet emissions centered at 410 nm because of 2H9/2→4I15/2 transition and centered at 379 nm because of 4G11/2→4I15/2 transition were also observed from the TGC. The increased luminescence was attributed to the decreased effective phonon energy and the increased energy transfer between the excited ions when Er3 ions were incorporated into the precipitated β-PbF2 nanocrystals. The results indicated two attractive spectroscopic properties of the Er3 doped TGC samples, compared to glass samples, namely a reduced multiphonon decay rate and a reduced inhomogeneous broadening. In addition, these oxyfluoride TGC materials were robust, easy and flexibile to process, and possible to be fabricated in the fiber form for device applications. 相似文献
3.
Silica glasses doped with Eu3+ ions prepared by sol-gel methods were investigated. The X-ray diffraction(XRD) was used to verify the nature of the studied systems. Excitation and emission spectra of Eu3+ ions in sol-gel glass materials were detected. Red-to-orange luminescence intensity ratios R/O related to integrated intensities of 5D0→7F2 to 5D0→7F1 transitions and luminescence lifetimes for 5D0 state of Eu3+ ions were determined. The results indicated that spectroscopic parameters for Eu3+ ions strongly depended on reagents and their relative ratios used for sol-gel glass preparation. 相似文献
4.
Preparation and Luminescence of Er^3+ Doped Oxyfluoride Glass Ceramics Containing LaF3 Nanocrystals 总被引:2,自引:2,他引:2
Er^3+ doped transparent oxyfluoride glass ceramics version and near infrared luminescence behavior of Er^3+ in containing LaF3 nanocrystals were prepared and the up-conglasses heat-treating time and temperature, the size (varied from 0 to 19 and glass ceramics were investigated. With increasing nm) and crystallinity (varied from 0 to 47%) of LaF3 nanocrystals in the glass ceramics are increased. The up-conversion luminescence intensity of Er^3+ ions in the glass ceramics is much stronger than that in the glasses The near infrared emission of Er^3+ ions in and increased significantly with increasing heat-treating time and temperature the glass ceramics is found to be similar to that in the glasses. 相似文献
5.
To investigate the modification effect of the B2O3 component on tellurite glass, a series of glasses with a composition of xB2O3-(80-x)TeO2-10ZnO-10Na20 (x = 0, 10, 20, 30, 40, 50, 60, 70, 80) and an additional amount of 0.5% Er2Os(in molar) were prepared. The refractive index, the absorption edge of the host, the J-O parameters of Er^3+ , the fluorescent decay time, the bandwidth, and the quantum efficiency for the 4Ⅰ13/2→4Ⅰ15/2 transition were obtained theoretically and experimentally. These results indicated that the introduction of B2O3 modified the performance of the tellurite glass. For example, with increasing content of B2O3, the refractive index of the host decreases from 1.9 to 1.5, the absorption edge of the host shifted toward the blue regime, the intensity parameter Ω6 changed from 1.08 × 10^-20(for the pure tellurite glass) to 1.98 ×10^-20 cm^2(for the pure borate glass), the bandwidth of the 4Ⅰ13/2→4Ⅰ15/2 transition increased, and the quantum efficiency of the 4Ⅰ13/2→4Ⅰ15/2 transition decreased. 相似文献
6.
A series of novel Er^3+/Yb^3+ co-doped (85- x ) TeO2-15WO3-xB2O3 (TWB;x=2%,5%,8%(mole fraction) ) glasses were prepared. Influence of B203 on the spectroscopic properties of Er^3+/Yb^3+ co-doped tungsten-tellurite glasses were investigated. It is found that the intensity of 1.5μm fluorescence, lifetime of the ^4I13/2 level and upconversion fluorescence all decrease with the increase of B2O3 content. The product of full width at half maximum (FWHM) and stimulated emission cross-section (σe^peak) of Er^3+ :^4I13/2→^4I15/2 transition has an optimum when B203 is 5% (mole fraction). The emission spectra of Er^3+ : ^4I13/2→^4I15/2 transition was analyzed using peak-fit routine, and an equivalent four-level system was proposed to estimate the stark splitting for the 411512 and ^4I13/2 levels of Er^3+ ions in TWB glasses at room temperature. 相似文献
7.
Er^3+/Yb^3+-codoped TeO2-ZnO-BaO-La2O3 tellurite glass fiber was fabricated by rotation and rod-in-tube technologies. The thermal stability and optical refractive index of the core and cladding glasses were determined by DTA and optical coupler, respectively. The average background loss of tellurite glass fiber was 1.8 dB/m at 1310 nm. Optical microscopy and field emission scanning electron microscope (FESEM) were used to study structural characteristics of preforms and optical fibers. The main loss of tellurite glass fiber could be attributed to scatter centre due to core-cladding interface defects. The amplifier performance of tellurite glass fiber was investigated by pumping with 980 nm laser diode (LD). The gain coefficient and maximum signal gain were 0.21 dB/mW and 10 dB, respectively, for a pumping power of 120 mW. Gains exceeding 5 dB were obtained over 30 nm bandwidth from 1535 to 1565 nm. The minimum noise figure was 4.8 dB at 1557 nm. 相似文献
8.
9.
Two kinds of germanate glasses singly doped with the ion concentration of 2.0mol.%Tm3+ and 2.0mol.%Ho3+, respectively, were prepared. According to McCumber theory, the absorption and stimulated emission cross-sections corresponding to the 3H6←→3F4 transitions of Tm3+ (at 1.8 μm) and the 5I8←→5I7 transitions of Ho3+ (at 2.0 μm) were obtained, and respective gain cross-section spectra were also computed as a function of population inversion according to absorption and emission cross-sections and the ion concentrations. For Tm3+-doped germanate glasses, the maximum of the absorption, emission, and gain cross-sections reached a value higher than those reported for fluorozirconate, fluoride, and oxyfluoride glasses. For Ho3+-doped germanate glasses, the maximum of absorption, emission, and gain cross-sections reached a value higher than that reported for fluorozircoaluminate glasses. Hence, these Tm3+-doped and Ho3+-doped germanate glasses exhibited an advantage for application in mid-infrared lasers at about 1.8 and 2.0 μm wavelength. 相似文献
10.
A kind of novel experiment was disclosed as it possessed two bands of fluorescence emission at 1.4 and 1.6 μm, which were perfectly complimentary to the current C band of optic communication. The fluorescence was based on energy transfer and up-conversion processes between Tm^3+ and Yb^3+ under direct pumping of 975 nm LD. The spectra and lifetimes of Tm^3+ fluorescence in the tellurite glass were described. The corresponding fluorescence characteristics and energy migration process were analyzed by the method of lifetime and intensity comparison. The mechanism of the up-conversion based IR fluorescence was presented upon analyzing the multi-photon pumping process. The potential advantages of Tm^3+/Yb^3+ co-doped tellurite glass as amplifier material were concluded. 相似文献
11.
Excitation and emission spectra of new borate La2CaB10O19 doped Eu^3 in VUV-VIS range, high resolution emission spectra at room temperature and lifetime of Eu^3 were investigated. The emission line at about 616nm attributed to the ^5D0-^7F2 transition of Eu^3 is the most intense emission of Eu^3 . The broad band at about 244nm is originated from charge transition band (CTB) of O^2→Eu^3 . According to the numbers of spectral lines ^5D0-^7F0 and ^5D0-7F1 in highresolution spectrum, Eu^3 ions occupy two crystallographic sites. The lifetimes of ^5D0-^7F0 transition of Eu^3 of two kinds of lattice sites are individually 2.1 and 2.6ms, and both are exponential decay. In the VUV excitation spectrum, complicated band between 130 and 170nm consists of host absorption and f-d transition of Eu^3 . 相似文献
12.
A. Majchrowski M.G. Brik G.A. Kumar K. Ozga I. Sildos A. Suchocki A. Slezak T. Lukasiewicz I.V. Kityk 《中国稀土学报(英文版)》2009,27(4):612-615
Detailed spectroscopic studies of Pr3+ ions in BiBO glass and Ca4GdO(BO3)3 crystal were performed. Experimental absorption spectra were measured at room temperature and assigned. The first principles discrete variational multielectron method was used to model the polarized absorption spectra of the Ca4GdO(BO3)3:Pr3+; without any fitting parameters, the overall appearance of the spectra was reproduced satisfactorily. The energy intervals between different molecular orbitals in the [PrO6] cluster were estimated. The conventional Judd-Ofelt theory was used to calculate the oscillator strengths of the 4f-4f transitions in the BiBO:Pr3+ system; the set of the phenomenological intensity parameters was determined. 相似文献
13.
Lead phosphate glasses singly doped with Dy3+ ions were studied. The samples were prepared in a glove box in order to eliminate hydroxyl groups. Local structures were examined using FT-IR. Excitation and luminescence spectra for Dy3+ ions in investigated lead phosphate glasses were registered. Luminescence intensity ratio Y/B related to 4F9/2→6HJ/2(where J=15, 13) transitions was determined and luminescence lifetime(τm) for the 4F9/2 state of Dy3+ ions were also measured. 相似文献