首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The integration of nanowires and nanotubes into electrical test structures to investigate their nanoelectronic transport properties is a significant challenge. Here, we present a single nanowire manipulation system to precisely maneuver and align individual nanowires. We show that a single nanowire can be picked up and transferred to a predefined location by electrostatic force. Compatible fabrication processes have been developed to simultaneously pattern multiple aligned nanowires by using one level of photolithography. In addition, we have fabricated and characterized representative devices and test structures including nanoelectromechanical switches with large on/off current ratios, bottom-gated silicon nanowire field-effect transistors, and both transfer-length-method and Kelvin test structures  相似文献   

2.
We report on optical experiments performed on individual GaAs nanowires and the manipulation of their temporal emission characteristics using a surface acoustic wave. We find a pronounced, characteristic suppression of the emission intensity for the surface acoustic wave propagation aligned with the axis of the nanowire. Furthermore, we demonstrate that this quenching is dynamical as it shows a pronounced modulation as the local phase of the surface acoustic wave is tuned. These effects are strongly reduced for a surface acoustic wave applied in the direction perpendicular to the axis of the nanowire due to their inherent one-dimensional geometry. We resolve a fully dynamic modulation of the nanowire emission up to 678 MHz not limited by the physical properties of the nanowires.  相似文献   

3.
By utilizing the reduced contact area of nanowires, we show that epitaxial growth of a broad range of semiconductors on graphene can in principle be achieved. A generic atomic model is presented which describes the epitaxial growth configurations applicable to all conventional semiconductor materials. The model is experimentally verified by demonstrating the growth of vertically aligned GaAs nanowires on graphite and few-layer graphene by the self-catalyzed vapor-liquid-solid technique using molecular beam epitaxy. A two-temperature growth strategy was used to increase the nanowire density. Due to the self-catalyzed growth technique used, the nanowires were found to have a regular hexagonal cross-sectional shape, and are uniform in length and diameter. Electron microscopy studies reveal an epitaxial relationship of the grown nanowires with the underlying graphitic substrates. Two relative orientations of the nanowire side-facets were observed, which is well explained by the proposed atomic model. A prototype of a single GaAs nanowire photodetector demonstrates a high-quality material. With GaAs being a model system, as well as a very useful material for various optoelectronic applications, we anticipate this particular GaAs nanowire/graphene hybrid to be promising for flexible and low-cost solar cells.  相似文献   

4.
Bottom‐up nanowires are attractive for realizing semiconductor devices with extreme heterostructures because strain relaxation through the nanowire sidewalls allows the combination of highly lattice mismatched materials without creating dislocations. The resulting nanowires are used to fabricate light‐emitting diodes (LEDs), lasers, solar cells, and sensors. However, expensive single crystalline substrates are commonly used as substrates for nanowire heterostructures as well as for epitaxial devices, which limits the manufacturability of nanowire devices. Here, nanowire LEDs directly grown and electrically integrated on metal are demonstrated. Optical and structural measurements reveal high‐quality, vertically aligned GaN nanowires on molybdenum and titanium films. Transmission electron microscopy confirms the composition variation in the polarization‐graded AlGaN nanowire LEDs. Blue to green electroluminescence is observed from InGaN quantum well active regions, while GaN active regions exhibit ultraviolet emission. These results demonstrate a pathway for large‐scale fabrication of solid state lighting and optoelectronics on metal foils or sheets.  相似文献   

5.
Madaria AR  Yao M  Chi C  Huang N  Lin C  Li R  Povinelli ML  Dapkus PD  Zhou C 《Nano letters》2012,12(6):2839-2845
Vertically aligned, catalyst-free semiconducting nanowires hold great potential for photovoltaic applications, in which achieving scalable synthesis and optimized optical absorption simultaneously is critical. Here, we report combining nanosphere lithography (NSL) and selected area metal-organic chemical vapor deposition (SA-MOCVD) for the first time for scalable synthesis of vertically aligned gallium arsenide nanowire arrays, and surprisingly, we show that such nanowire arrays with patterning defects due to NSL can be as good as highly ordered nanowire arrays in terms of optical absorption and reflection. Wafer-scale patterning for nanowire synthesis was done using a polystyrene nanosphere template as a mask. Nanowires grown from substrates patterned by NSL show similar structural features to those patterned using electron beam lithography (EBL). Reflection of photons from the NSL-patterned nanowire array was used as a measure of the effect of defects present in the structure. Experimentally, we show that GaAs nanowires as short as 130 nm show reflection of <10% over the visible range of the solar spectrum. Our results indicate that a highly ordered nanowire structure is not necessary: despite the "defects" present in NSL-patterned nanowire arrays, their optical performance is similar to "defect-free" structures patterned by more costly, time-consuming EBL methods. Our scalable approach for synthesis of vertical semiconducting nanowires can have application in high-throughput and low-cost optoelectronic devices, including solar cells.  相似文献   

6.
We demonstrate a general approach for growing vertically aligned, single-crystalline nanowires of any material on arbitrary substrates by using plasma-sputtered Au/Pd thin films as a catalyst through the vapor-liquid-solid process. The high-energy sputtered Au/Pd atoms form a reactive interface with the substrate forming nanoclusters which get embedded in the substrate, thus providing mechanical stability for vertically aligned nanowire growth. We demonstrate that our approach for vertically aligned nanowire growth is generic and can be extended to various complex substrates such as conducting indium tin oxide.  相似文献   

7.
We report here on applying electric fields and dielectric media to achieve controlled alignment of single-crystal nickel silicide nanowires between two electrodes. Depending on the concentration of nanowire suspension and the distribution of electrical field, various configurations of nanowire interconnects, such as single, chained, and branched nanowires were aligned between the electrodes. Several alignment mechanisms, including the induced charge layer on the electrode surface, nanowire dipole-dipole interactions, and an enhanced local electrical field surrounding the aligned nanowires are proposed to explain these novel dielectrophoretic phenomena of one-dimensional nanostructures. This study demonstrates the promising potential of dielectrophoresis for constructing nanoscale interconnects using metallic nanowires as building blocks.  相似文献   

8.
Liu M  Chen Y  Guo Q  Li R  Sun X  Yang J 《Nanotechnology》2011,22(12):125302
Assembly and alignment of nanowires or nanotubes are critical steps for integrating functional nanodevices by the bottom-up strategy. However, it is still challenging to manipulate either an array of nanowires or individual nanowires in a controllable manner. Here we present a simple but versatile method of positioning and aligning nanowires by hydrodynamic focusing that functions as 'hydro-tweezers'. By adjusting the flow duration and flow rates of the sheath flows and sample flow, the density, width and position of the nanowire arrays, as building blocks of nanodevices, can be readily tuned in the hydrodynamic focusing process. This approach exhibits great potentials in the assembly of an array of functional nanodevices. With this method, multiple nanowire arrays can be positioned and aligned on predefined locations. Further focusing the sample flow, nanowires flow in single file. Thus single nanowires can also be lined up and located to desired positions.  相似文献   

9.
Elastic property of vertically aligned nanowires   总被引:1,自引:0,他引:1  
Song J  Wang X  Riedo E  Wang ZL 《Nano letters》2005,5(10):1954-1958
An atomic force microscopy (AFM) based technique is demonstrated for measuring the elastic modulus of individual nanowires/nanotubes aligned on a solid substrate without destructing or manipulating the sample. By simultaneously acquiring the topography and lateral force image of the aligned nanowires in the AFM contacting mode, the elastic modulus of the individual nanowires in the image has been derived. The measurement is based on quantifying the lateral force required to induce the maximal deflection of the nanowire where the AFM tip was scanning over the surface in contact mode. For the [0001] ZnO nanowires/nanorods grown on a sapphire surface with an average diameter of 45 nm, the elastic modulus is measured to be 29 +/- 8 GPa.  相似文献   

10.
The research described here investigates the hypothesis that nanoarchitecture contained in a nanowire array is capable of attenuating the adverse host response generated when medical devices are implanted in the body. This adverse host response, or biofouling, generates an avascular fibrous mass transfer barrier between the device and the analyte of interest, disabling the implant if it is a sensor. Numerous studies have indicated that surface chemistry and architecture modulate the host response. These findings led us to hypothesize that nanostructured surfaces will inhibit the formation of an avascular fibrous capsule significantly. We are investigating whether arrays of oscillating magnetostrictive nanowires can prevent protein adsorption. Magnetostrictive nanowires were fabricated by electroplating a ferromagnetic metal alloy into the pores of a nanoporous alumina template. The ferromagnetic nanowires are made to oscillate by oscillating the magnetic field surrounding the wires. Radiolabeled bovine serum albumin, enzyme-linked immunosorbent assay (ELISA), and other protein assays were used to study protein adhesion on the nanowire arrays. These results display a reduced protein adsorption per surface area of static nanowires. Comparing the surfaces, 14-30% of the protein that absorbed on the flat surface adsorbed on the nanowires. Our contact angle measurements indicate that the attenuation of protein on the nanowire surface might be due to the increased hydrophilicity of the nanostructured surface compared to a flat surface of the same material. We oscillated the magnetostrictive wires by placing them in a 38 G 10 Hz oscillating magnetic field. The oscillating nanowires show a further reduction in protein adhesion where only 7-67% of the protein on the static wires was measured on the oscillating nanowires. By varying the viscosity of the fluid the nanowires are oscillated in, we determined that protein detachment is shear-stress modulated. We created a high shearing fluid with dextran, which reduced protein adsorption on the oscillating nanowires by 70% over nanowires oscillating in baseline viscosity fluid. Our preliminary studies strongly suggest that the architecture in the static nanowire arrays and the shear created by oscillating the nanowire arrays would attenuate the biofouling response in vivo.  相似文献   

11.
Wu H  Yang Y  Oh E  Lai F  Yu D 《Nanotechnology》2012,23(26):265602
We report chemical-vapor-deposition (CVD) synthesis of high-density lead sulfide (PbS) nanowire arrays and nano pine trees directly on Ti thin films, and the fabrication of photovoltaic devices based upon the PbS nanowires. The as-grown nanowire arrays are largely vertically aligned to the substrates and are uniformly distributed over a relatively large area. Field effect transistors incorporating single PbS nanowires show p-type conduction and high mobilities. These catalytic metal thin films also serve as photocarrier collection electrodes and greatly facilitate device integration. For the first time, we have fabricated Schottky junction photovoltaic devices incorporating PbS nanowires, which demonstrate the capability of converting near-infrared light to electricity. The PbS nanowire devices are stable in air and their external quantum efficiency shows no significant decrease over a period of 3?months in air. We have also compared the photocurrent direction and quantum efficiencies of photovoltaic devices made with different metal electrodes, and the results are explained by band bending at the Schottky junction. Our research shows that PbS nanowires are promising building blocks for collecting near-infrared solar energy.  相似文献   

12.
Semiconductor nanowire devices have several properties which match future requirements of scaling down the size of electronics. In typical microelectronics production, a number of microstructures are aligned precisely on top of each other during the fabrication process. In the case of nanowires, this mandatory condition is still hard to achieve. A technological breakthrough is needed to accurately place nanowires at any specific position and then form devices in mass production. In this article, an upscalable process combining conventional micromachining with phase shift lithography will be demonstrated as a suitable tool for nanowire device technology. Vertical Si and ZnO nanowires are demonstrated on very large (several cm(2)) areas. We demonstrate how the nanowire positions can be controlled, and the resulting nanowires are used for device fabrication. As an example Si/ZnO heterojunction diode arrays are fabricated. The electrical characterization of the produced devices has also been performed to confirm the functionality of the fabricated diodes.  相似文献   

13.
Vertically aligned ZnO nanowires have been synthesized by a hydrothermal method. After being irradiated by a short laser pulse, the tips of the as-synthesized ZnO nanowires can be tailored into a spherical shape. Transmission electron microscopy revealed that the spherical tip is a single-crystalline piece connected to the body of the ZnO nanowire, and that the center of the sphere is hollow. The growth mechanism of the hollow ZnO nanospheres is proposed to involve laser-induced ZnO evaporation immediately followed by re-nucleation in a temperature gradient environment. The laser-irradiated ZnO nanowire array shows hydrophobic properties while the original ZnO nanowire array shows hydrophilicity. The as-grown ZnO nanowire arrays with hollow spherical tips can serve as templates to grow ZnO nanowire arrays with very fine tips, which may be a good candidate material for use in field emission and scanning probe microscopy.   相似文献   

14.
Densely packed arrays of magnetic nanowires have been synthesized by electrodeposition filling of nanopores in alumina and titania membranes formed by self-assembling during anodization process. Emphasis is made on the control of the production parameters leading to ordering degree and lattice parameter of the array as well as nanowires diameter and length. Structural, morphological and magnetic properties exhibited by nanowire arrays have been studied for several nanowire compositions, different ordering degree and for different nanowire aspect ratios. The magnetic behaviour of nanowires array is governed by the balance between different energy contributions: shape anisotropy of individual nanowires, the magnetostatic interaction of dipolar origin among nanowires, and magnetocrystalline and magnetoelastic anisotropies induced by the pattern templates. These novel nanocomposites, based on ferromagnetic nanowires embedded in anodic nanoporous templates, are becoming promising candidates for technological applications such as functionalised arrays for magnetic sensing, ultrahigh density magnetic storage media or spin-based electronic devices.  相似文献   

15.
Liao X  Zhang X  Li S 《Nanotechnology》2008,19(22):225303
Density control is a valuable concern in the research of ZnO nanowire arrays. In this study, unannealed and annealed ZnO thin films were used as substrates to fabricate ZnO nanowire arrays. In the unannealed thin film, an inhomogeneous distribution of the nanowire array was found: the density of nanowires decreases with the increase of distance to the edge. In the annealed thin film, the density of nanowire array becomes larger and more homogeneous. Moreover, nanowires are found in high density along microcracks. It is proposed that the residual stresses in the thin film and the density of the nanowire array are in inverse proportion, leading to the results mentioned above. The relationship between residual stresses and the density of nanowires will have potential applications in modifying the density of ZnO nanowire arrays.  相似文献   

16.
Semiconductor nanowires are promising for photovoltaic applications, but, so far, nanowire-based solar cells have had lower efficiencies than planar cells made from the same materials, even allowing for the generally lower light absorption of nanowires. It is not clear, therefore, if the benefits of the nanowire structure, including better charge collection and transport and the possibility of enhanced absorption through light trapping, can outweigh the reductions in performance caused by recombination at the surface of the nanowires and at p-n junctions. Here, we fabricate core-shell nanowire solar cells with open-circuit voltage and fill factor values superior to those reported for equivalent planar cells, and an energy conversion efficiency of ~5.4%, which is comparable to that of equivalent planar cells despite low light absorption levels. The device is made using a low-temperature solution-based cation exchange reaction that creates a heteroepitaxial junction between a single-crystalline CdS core and single-crystalline Cu2S shell. We integrate multiple cells on single nanowires in both series and parallel configurations for high output voltages and currents, respectively. The ability to produce efficient nanowire-based solar cells with a solution-based process and Earth-abundant elements could significantly reduce fabrication costs relative to existing high-temperature bulk material approaches.  相似文献   

17.
First-order reversal curve diagrams have been used to investigate magnetostatic interactions and average coercivity of individual wires in soft ferromagnetic uniform length nanowire arrays. We present a method for identifying these physical parameters on the out-of-plane first-order reversal curve diagrams: the position of the irreversible part on the critical axis is a good approximation to the average value of the nanowire coercivity and the maximum interaction field is equal to the interaction field at saturation. Their dependence upon material (CoFeB and Ni) and nanowire length are presented. The magnetostatic interactions increase linearly with length, in agreement with a model developed previously. The global array coercivity, obtained from magnetization curves, is generally lower than the apparent average coercivity for individual nanowires. This coercivity reduction increases linearly with the magnetostatic interactions. The general shape of the out-of-plane first-order reversal curve diagrams is compared with those obtained from a theoretical moving Preisach model.  相似文献   

18.
This study presents a novel approach for indirect integration of InAs nanowires on 2' Si substrates. We have investigated and developed epitaxial growth of InAs nanowires on 2' Si substrates via the introduction of a thin yet high-quality InAs epitaxial layer grown by metalorganic vapor phase epitaxy. We demonstrate well-aligned nanowire growth including precise position and diameter control across the full wafer using very thin epitaxial layers (<300 nm). Statistical analysis results performed on the grown nanowires across the 2' wafer size verifies our full control on the grown nanowire with 100% growth yield. From the crystallographic viewpoint, these InAs nanowires are predominantly of wurtzite structure. Furthermore, we show one possible device application of the aforementioned structure in vertical wrap-gated field-effect transistor geometry. The vertically aligned InAs nanowires are utilized as transistor channels and the InAs epitaxial layer is employed as the source contact. A high uniformity of the device characteristics for numerous transistors is further presented and RF characterization of these devices demonstrates an f(t) of 9.8 GHz.  相似文献   

19.
Hong YJ  Lee WH  Wu Y  Ruoff RS  Fukui T 《Nano letters》2012,12(3):1431-1436
Semiconductor nanowire arrays integrated vertically on graphene films offer significant advantages for many sophisticated device applications. We report on van der Waals (VDW) epitaxy of InAs nanowires vertically aligned on graphene substrates using metal-organic chemical vapor deposition. The strong correlation between the growth direction of InAs nanowires and surface roughness of graphene substrates was investigated using various graphene films with different numbers of stacked layers. Notably, vertically well-aligned InAs nanowire arrays were obtained easily on single-layer graphene substrates with sufficiently strong VDW attraction. This study presents a considerable advance toward the VDW heteroepitaxy of inorganic nanostructures on chemical vapor-deposited large-area graphenes. More importantly, this work demonstrates the thinnest epitaxial substrate material that yields vertical nanowire arrays by the VDW epitaxy method.  相似文献   

20.
One-dimensional single crystal nanostructures have garnered much attention, from their low-dimensional physics to their technological uses, due to their unique properties and potential applications, from sensors to interconnects. There is an increasing interest in metallic titanium nanowires, yet their single crystal form has not been actualized. Vapor-liquid-solid (VLS) and template-assisted top-down methods are common means for nanowire synthesis; however, each has limitations with respect to nanowire composition and crystallinity. Here we show a simple electrochemical method to generate single crystal titanium nanowires on monocrystalline NiTi substrates. This work is a significant advance in addressing the challenge of growing single crystal titanium nanowires, which had been precluded by titanium's reactivity. Nanowires grew non-parallel to the surface and in a periodic arrangement along specific substrate directions; this behavior is attributed to a defect-driven mechanism. This synthesis technique ushers in new and rapid routes for single crystal metallic nanostructures, which have considerable implications for nanoscale electronics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号