首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
For a study of the underlying mechanisms of a possible interaction between ethanol and nicotinic receptors during ethanol dependence, the aim of this work was to investigate the effect of chronic ethanol exposure on nicotinic receptor subtypes in a transfected fibroblast cell line (M10 cells) stably expressing alpha4beta2 nicotinic receptor subtype and an SH-SY5Y neuroblastoma cell line expressing alpha3, alpha5, alpha7, beta2, and beta4 nicotinic acetylcholine receptor (nAChR) subunits. A significant dose-related decrease (-30-80%) in number of [3H]nicotine binding sites was observed in ethanol-treated (25-240 mM) compared with untreated M10 cells. Similarly, 4-day treatment with ethanol in concentrations relevant to chronic alcoholism (100 mM) decreased the number of nicotinic receptor binding sites in the SH-SY5Y cells when measured using [3H]epibatidine. When M10 cells were chronically treated with nicotine, ethanol partly inhibited the up-regulation of nicotinic receptors when present in the cells together with nicotine. Chronic treatment for 4 days with 100 mM ethanol significantly decreased the mRNA level for the alpha3 nAChR subunit (-39%), while the mRNA levels for the alpha7 (+30%) and alpha4 (+22%) subunits were significantly increased. Chronic ethanol treatment did not affect the mRNA levels for the beta2 nAChR subunit. Changes in the levels of nAChR protein and mRNA may have adaptive significance and be involved in the development of dependence, tolerance, and addiction to chronic ethanol and nicotine exposure. They also may be targets for therapeutic strategies in the treatment of ethanol and nicotine dependence.  相似文献   

2.
The cholinergic regulation of phospholipase D activity was studied in SH-SY5Y human neuroblastoma cells with phosphatidylethanol formation as a specific marker for the enzyme activity. The muscarinic antagonists, hexahydrosiladifenidol and pirenzepine, inhibited carbachol-induced phosphatidylethanol formation in a concentration-dependent manner and the inhibitory constants indicated that muscarinic M1 receptors are responsible for the major part of the phospholipase D activation. The mechanism of receptor-mediated phospholipase D activation varies between different cell types and receptors. In SH-SY5Y cells, the carbachol-induced phospholipase D activity was inhibited by protein kinase C inhibitors. Since both phospholipases D and C are activated by muscarinic stimulation in SH-SY5Y cells, most of the phospholipase D activation is probably secondary to the protein kinase C activation that follows phospholipase C-mediated increase in diacylglycerols. Other kinases may be involved in the regulation since also a tyrosine kinase inhibitor decreased the phosphatidylethanol formation. Stimulation of G-protein(s) and increase in the intracellular Ca2+ concentration activated phospholipase D and may be additional mechanisms for the muscarinic regulation of phospholipase D in SH-SY5Y cells. Propranolol, an inhibitor of phosphatidic acid phosphohydrolase, increased the carbachol-induced formation of phosphatidic acid at the expense of 1,2-diacylglycerol. This indicates that phospholipase D contributes to the formation of 1,2-diacylglycerol after carbachol stimulation in SH-SY5Y cells.  相似文献   

3.
The aim of this study was to investigate the mechanism by which short-term pretreatment with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA; 100 nM) enhances noradrenaline (NA) release from the human neuroblastoma cell line SH-SY5Y. Subcellular fractionation and immunocytochemical studies demonstrated that an 8-min TPA treatment caused translocation of the alpha-subtype of protein kinase C (PKC) from the cytosol to the plasma membrane. In contrast, TPA altered the distribution of PKC-epsilon from cytosolic and membrane-associated to cytoskeleton- and membrane-associated. TPA had no effect on the cytosolic location of PKC-zeta. Subcellular fractionation studies also showed that the myristoylated alanine-rich C-kinase substrate (MARCKS), a major neuronal PKC substrate that has been implicated in the mechanism of neurotransmitter release, translocated from membranes to cytosol in response to an 8-min TPA treatment. Under these conditions the level of phosphorylation of MARCKS increased threefold. The ability of TPA to enhance NA release and to cause the translocation and phosphorylation of MARCKS was inhibited by the PKC inhibitor Ro 31-8220 (10 microM). Selective down-regulation of PKC subtypes by prolonged exposure to phorbol 12,13-dibutyrate (100 nM) attenuated the TPA-induced enhancement of NA release and the translocation of MARCKS over an interval similar to that of down-regulation of PKC-alpha (but not -epsilon or -zeta). Thus, we have demonstrated a strong correlation between the translocation of MARCKS and the enhancement of NA release from SH-SY5Y cells due to the TPA-induced activation of PKC-alpha.  相似文献   

4.
Although the identity of the endogenous ligands for sigma (sigma) receptors is unknown, neuropeptide Y (NPY) has been named as a possible candidate for a natural transmitter at these receptors. Using a superfusion system, we compared the effect of NPY on NMDA-stimulated [3H]dopamine release in rat striatum to that of the sigma agonists (+)-pentazocine and BD737. In contrast to (+)-pentazocine- or BD737-mediated inhibition of release, NPY enhanced release. However, the same sigma antagonists (BD1008, DuP734, haloperidol and DTG) that reverse (+)-pentazocine- or BD737-mediated inhibition, as well as a Y receptor antagonist, PYX-1, all reversed the enhancement. PYX-1 also reversed the (+)-pentazocine- and BD737-mediated inhibition of release. Peptide YY (PYY) and [Leu31,Pro34]NPY did not mimic the effect of NPY. NPY13-36 enhanced release to the same extent as NPY but the effect was not reversed by sigma antagonists. Our findings are consistent with the potential role of NPY as an endogenous ligand for a subtype of sigma receptor with characteristics different from Y1, Y2 and Y3 receptors but sensitive to PYX-1.  相似文献   

5.
目的:观察微波辐射对人神经母细胞瘤SH-SY5Y细胞凋亡的影响,并探讨其机制.方法:采用10、30和50 mW·cm-2辐射强度的微波辐射SH-SY5Y细胞5 min,以假辐射组(0 mW·cm-2)为对照,光镜下观察细胞形态变化;荧光显微镜下观察DAPI染色细胞核的形态;CTAB法提取细胞基因组DNA,电泳观察DNA ladder;台盼蓝拒染法检测细胞存活率;AnnexinV-FITC和PI双染色,流式细胞仪检测细胞凋亡率;MTT法检测细胞相对活性;蛋白质印迹检测细胞凋亡相关蛋白的表达.结果:微波辐射后SH-SY5Y细胞形态即刻改变,胞核、胞质结构欠清,细胞皱缩甚至脱壁;细胞核内的染色质出现不规则凝集,碎裂成2~5个微核;细胞DNA出现明显的梯状条带;细胞存活率随微波辐射强度增大逐渐降低,10 mW·cm-2辐射组与假辐射组比较,细胞存活率差异无统计学意义(P>0.05),但30、50 mW·cm-2辐射组细胞存活率明显低于假辐射组(P<0.05);微波辐射后6 h的细胞凋亡率随辐射强度的增加逐渐升高,各辐射组细胞凋亡率均明显高于假辐射组(P<0.05);微波辐射后24和48 h,细胞相对活力随辐射强度的增加明显降低,各辐射组的细胞相对活力均明显低于假辐射组(P<0.05).微波辐射后,细胞凋亡相关蛋白Bcl-2、survivin表达水平逐渐下降,Bax、caspase-3 和caspase-7表达水平逐渐升高,caspase-8和-9表达水平无明显变化.结论:微波辐射可诱导SH-SY5Y细胞凋亡,其作用机制可能与survivin、Bcl-2蛋白表达水平下调、Bax蛋白表达水平上调及caspase-3和caspase-7的作用有关,而与caspase-8和caspase-9介导的caspase-3活化这一作用无密切关系.  相似文献   

6.
We have attempted to elucidate the mechanism of apoptotic cell death induced by hypoxia (very low oxygen conditions) in neuronal cells. Human neuroblastoma SK-N-MC cells under hypoxic conditions resulted in apoptosis in a time-dependent manner estimated by DNA fragmentation assay and nuclear morphology stained with fluorescent chromatin dye. Pretreatment with Z-Asp-CH2-DCB, a caspase inhibitor, suppressed the DNA ladder in response to hypoxia in a concentration-dependent manner. An increase in caspase-3-like protease (DEVDase) activity was observed during apoptosis, but no caspase-1 activity (YVADase) was detected. To confirm the involvement of caspase-3 during apoptosis, Western blot analysis was performed using anti-caspase-3 antibody. The 20- and 17-kDa proteins, corresponding to the active products of caspase-3, were generated in hypoxia-challenged lysates in which processing of the full length form of caspase-3 was evident. With a time course similar to this caspase-3 activation, hypoxic stress caused the cleavage of PARP, yielding an 85-kDa fragment typical of caspase activity. In addition, caspase-2 was also activated by hypoxia, and the stress elicited the release of cytochrome c into the cytosol during apoptosis. These results suggest that caspase activation and cytochrome c release play roles in hypoxia-induced neuronal apoptosis.  相似文献   

7.
We have used gene disruption to isolate two talin (-/-) ES cell mutants that contain no intact talin. The undifferentiated cells (a) were unable to spread on gelatin or laminin and grew as rounded colonies, although they were able to spread on fibronectin (b) showed reduced adhesion to laminin, but not fibronectin (c) expressed much reduced levels of beta1 integrin, although levels of alpha5 and alphaV were wild-type (d) were less polarized with increased membrane protrusions compared with a vinculin (-/-) ES cell mutant (e) were unable to assemble vinculin or paxillin-containing focal adhesions or actin stress fibers on fibronectin, whereas vinculin (-/-) ES cells were able to assemble talin-containing focal adhesions. Both talin (-/-) ES cell mutants formed embryoid bodies, but differentiation was restricted to two morphologically distinct cell types. Interestingly, these differentiated talin (-/-) ES cells were able to spread and form focal adhesion-like structures containing vinculin and paxillin on fibronectin. Moreover, the levels of the beta1 integrin subunit were comparable to those in wild-type ES cells. We conclude that talin is essential for beta1 integrin expression and focal adhesion assembly in undifferentiated ES cells, but that a subset of differentiated cells are talin independent for both characteristics.  相似文献   

8.
Polycythemia vera (PV) is associated with a high incidence of thrombosis. The association of apparent and secondary polycythemia with thrombosis is not clear. It was suggested that activation of the coagulation system contributes to thrombus formation in PV. However, the mechanism of activation is unknown. Monocytes generate a potent tissue factor (TF) upon stimulation with various substances, which is involved in thrombus formation in various disorders. Therefore, we studied the possibility that the factor is involved in the activation of coagulation and thrombus formation also in PV. Unstimulated peripheral blood mononuclear cells (PBMC) from each of the different types of polycythemia expressed weak TF activity (2 U) and antigen (41.4 to 52.9 pg/ml), which were similar to normal controls. Following stimulation with endotoxin, PBMC from normal controls and from apparent and secondary polycythemia showed a 3.9- to 4.5-fold increase in TF, while cells from PV showed a 21-fold increase (P<0.001). Similar levels were generated by PBMC after treatment of PV and at the spent phase. TF was generated by monocytes but not by lymphocytes. Plasma prothrombin fragment1+2 (F1+2) levels, assayed at the same time, were significantly higher in PV (2.46 nm) compared to normals and apparent and secondary polycythemia (0.22 to 0.32 nm), and were in a significant correlation with monocyte TF activity and antigen levels (r = 0.77, 0.87). The high levels of F1+2 confirm that the coagulation system is activated in PV. The increased capacity of monocytes to generate TF may be responsible for the activation of the coagulation system and thrombus formation. The hypercoagulability state that is induced by this mechanism suggests that long-life oral anticoagulation should be considered once thrombosis has been developed in PV.  相似文献   

9.
In streptolysin-O (SLO)-perforated rat brain cortical synaptosomes, Ca2+-induced [3H]noradrenaline (3H-NA) release began with a phase lasting about 1 min that did not depend on MgATP. Subsequent release became increasingly MgATP-dependent. The first phase involved release from previously "primed" synaptic vesicles. MgATP-dependent release, on the other hand, was release from unprimed vesicles that needed to be primed by ATP hydrolysis before they could be fused with the presynaptic membrane. Vesicle depriming was detected by observing that the initial release decreased when the synaptosomes were perforated and incubated for 2 min in the absence of MgATP before increasing Ca2+ to promote release. One millimolar N-ethylmaleimide (NEM) inhibited both MgATP-dependent and MgATP-independent release at all times of incubation (0.5-5 min), and inhibition by NEM was partially reversed at short (0.5 min) and longer (5 min) times by adding intact N-ethylmaleimide sensitive fusion protein (NSF) to the perforated synaptosomes. Polyclonal antibodies against the N-terminal domain of NSF produced dose-dependent inhibition of Ca2+-induced 3H-NA release. This inhibition occurred in both early and late release phases and was highly significant at early times if the perforated synaptosomes were preincubated for 2 min with anti-NSF. These results indicate participation of NSF both after vesicular fusion, probably for separation of SNARE proteins in v/t-SNARE complexes before endocytosis, and, surprisingly, after docking, possibly to maintain vesicles in a primed state and reverse depriming during regulated secretion.  相似文献   

10.
The presynaptic nicotinic modulation of dopamine release from striatal nerve terminals is well established, but the subtype(s) of neuronal nicotinic acetylcholine receptor (nAChR) underlying this response has not been identified. Recently, alpha-conotoxin-MII has been reported to inhibit potently and selectively the rat alpha3beta2 combination of nAChR subunits. Here we have synthesised the peptide, confirmed its specificity, and examined its effect on the (+/-)-anatoxin-a-evoked release of [3H]dopamine from rat striatal synaptosomes and slices. Alpha-conotoxin-MII (112 nM) completely blocked acetylcholine-evoked currents of alpha3beta2 nAChRs expressed in Xenopus oocytes (IC50 = 8.0 +/- 1.1 nM). Pairwise combinations of other nicotinic subunits were not blocked by 112 nM alpha-conotoxin-MII. On perfused striatal synaptosomes and slices, alpha-conotoxin-MII dose-dependently inhibited [3H]dopamine release evoked by 1 microM (+/-)-anatoxin-a with IC50 values of 24.3 +/- 2.9 and 17.3 +/- 0.1 nM, respectively. The dose-response curve was shifted to the right with increasing agonist concentrations. However, the maximal inhibition of responses achieved by alpha-conotoxin-MII (112 nM) was 44.9 +/- 5.4% for synaptosomes and 25.0 +/- 4.1% for slices, compared with an inhibition by 10 microM mecamylamine of 77.9 +/- 3.7 and 88.0 +/- 2.1%, respectively. These results suggest the presence of presynaptic alpha3beta2-like nAChRs on striatal dopaminergic terminals, but the incomplete block of (+/-)-anatoxin-a-evoked [3H]dopamine release by alpha-conotoxin-MII also supports the participation of nAChRs composed of other subunits. The lower inhibition found in slices is consistent with an additional indirect nicotinic stimulation of dopamine release via an alpha-conotoxin-MII-insensitive nAChR.  相似文献   

11.
Insulin-like growth factor I (IGF-I) is a potent neurotropic factor promoting the differentiation and survival of neuronal cells. SH-SY5Y human neuroblastoma cells are a well characterized in vitro model of nervous system growth. We report here that IGF-I stimulated the tyrosine phosphorylation of the type I IGF receptor (IGF-IR) and insulin receptor substrate-2 (IRS-2) in a time- and concentration-dependent manner. These cells lacked IRS-1. After being tyrosine phosphorylated, IRS-2 associated transiently with downstream signaling molecules, including phosphatidylinositol 3-kinase (PI 3-K) and Grb2. Treatment of the cells with PI 3-K inhibitors (wortmannin and LY294002) increased IGF-I-induced tyrosine phosphorylation of IRS-2. We also observed a concomitant increase in the mobility of IRS-2, suggesting that PI 3-K mediates or is required for IRS-2 serine/threonine phosphorylation, and that this phosphorylation inhibits IRS-2 tyrosine phosphorylation. Treatment with PI 3-K inhibitors induced an increased association of IRS-2 with Grb2, probably as a result of the increased IRS-2 tyrosine phosphorylation. However, even though the PI 3-K inhibitors enhanced the association of Grb2 with IRS-2, these compounds suppressed IGF-I-induced mitogen-activated protein kinase activation and neurite outgrowth. Together, these results indicate that although PI 3-K participates in a negative regulation of IRS-2 tyrosine phosphorylation, its activity is required for IGF-IR-mediated mitogen-activated protein kinase activation and neurite outgrowth.  相似文献   

12.
We studied the effect of endogenous adenosine on the release of [3H]acetylcholine ([3H]ACh) in cultures enriched (96.4+/-0.4%) in rat cholinergic amacrine-like neurons, as determined by labeling with an antibody against choline acetyltransferase. A small population of these cells also contained GABA. Using these cultures we observed that both [3H]ACh release, which was largely Ca2+-dependent, and 45Ca2+ influx, evoked by depolarization with 50 mM KCl, were increased when adenosine A1 receptor activation was prevented by removal of endogenous adenosine with adenosine deaminase, or by application of the A1 receptor antagonist DPCPX. Our results indicate that, in cultured rat amacrine-like neurons, the activation of A1 receptors decreases calcium influx and, thereby, inhibits [3H]ACh release.  相似文献   

13.
Hepatitis C virus (HCV)-specific cytotoxic T lymphocytes (CTL) have been shown to play a role in host defense and pathogenesis of chronic HCV infection. Our aim was to test the hypothesis that intrahepatic HCV-specific CTL activity may impact subsequent response to interferon alfa (IFN-alpha) therapy. Of the 37 patients that we have prospectively evaluated for HCV-specific CTL activity in liver, 21 received IFN therapy, and 19 completed a 6-month course and attended 6 to 18 months of follow-up. Intrahepatic CD8+ cells were isolated from liver biopsy tissue and tested against target cells expressing HCV antigens to determine intrahepatic CTL activity. The relationship between treatment response and HCV-specific CTL activity and other factors known to associate with response (genotype, viremia, histology) was analyzed. HCV-specific CTL activity was detected in 9 of 21 patients (and 9 of 19 who completed therapy). After 6 months of IFN therapy, 8 of 19 (42%) patients had normal serum alanine transaminase (ALT) (complete responders). After 18 months of follow-up, only 3 patients (16%) had a sustained biochemical response. Of the 9 patients with detectable HCV-specific CTL activity in their liver before treatment, 7 (78%) developed a complete response. In contrast, only 1 of the 10 patients with no detectable HCV-specific CTL activity developed a complete response to IFN (P < .01). In 6 of 8 patients with a complete response, including the 3 sustained responders, the CTL response appeared to be directed predominately to the HCV core region. These data suggest that the host immune response, particularly that mediated by CD8+ CTL, may be important in determining the outcome of IFN therapy for chronic HCV infection. Further understanding of the mechanism of action of IFN should impact the design of better therapeutic strategies against chronic HCV infection.  相似文献   

14.
In Parkinson's disease the cell death of dopamine neurons has been proposed to be mediated by an apoptotic death process, in which nitric oxide may be involved. This article reports the induction of apoptosis by nitric oxide and peroxynitrite in human dopaminergic neuroblastoma SH-SY5Y cells and the antiapoptotic activity of (-)-deprenyl. After the cells were treated with a nitric oxide donor, NOR-4, or a peroxynitrite donor, SIN-1, DNA damage was quantitatively studied using a single-cell gel electrophoresis (comet) assay. NOR-4 and SIN-1 induced DNA damage dose-dependently. Cycloheximide and alkaline treatment of the cells prevented the DNA damage, indicating that the damage is apoptotic and that it depends on the intracellular signal transduction. Superoxide dismutase and the antioxidants reduced glutathione and alpha-tocopherol protected the cells from the DNA damage. (-)-Deprenyl protected the cells from the DNA damage induced by nitric oxide or peroxynitrite almost completely. The protection by (-)-deprenyl was significant even after it was washed from the cells, indicating that (-)-deprenyl may activate the intracellular system against apoptosis. These results suggest that (-)-deprenyl or related compounds may be neuroprotective to dopamine neurons through its antiapoptotic activity.  相似文献   

15.
We have studied the binding of [3H]-NPY and the newly developed non-peptide Y1 receptor antagonist [3H]-BIBP3226 to intact SK-N-MC cells and CHO-K1 cells transfected with the human NPY Y1 receptor gene i.e. CHO-Y1 cells. Whereas the association and dissociation of the specific [3H]-NPY binding was slow, the binding kinetics of [3H]-BIBP3226 binding was very rapid. Saturation binding of both radioligands reveal the presence of an apparently homogeneous population of high affinity binding sites in both cell lines. The corresponding equilibrium dissociation constants are similar for the two cell lines and are close to those obtained from previous competition binding experiments. The specific binding of both radioligands was completely and with high affinity displaced by BIBP3226 and its inactive (S)-enantiomer BIBP3435 was much less potent. Whilst the NPY Y1 agonists NPY, PYY and [Leu31-Pro34]-NPY completely and potently displaced [3H]-NPY binding, they could only displace 70 to 80% of the [3H]-BIBP3226 binding sites in CHO-Y1 and SK-N-MC cells. A possible explanation can be that only part of the receptors are G-protein coupled. In agreement pertussis toxin was found to reduce high affinity [3H]-NPY binding sites in CHO-Y1 cells whereas [3H]-BIBP3226 binding parameters remained unchanged.  相似文献   

16.
17.
18.
We have previously demonstrated cleavage of alpha-spectrin by caspase-3 and calpain during apoptosis in SH-SY5Y neuroblastoma cells (Nath, R., Raser, K. J., Stafford, D., Hajimohammadreza, I., Posner, A., Allen, H., Talanian, R. V., Yuen, P., Gilbertsen, R. B., and Wang, K. K. (1996) Biochem. J. 319, 683-690). We demonstrate here that calcium/calmodulin-dependent protein kinase IV (CaMK IV) is cleaved during apoptosis by caspase-3 and calpain. We challenged SH-SY5Y cells with the pro-apoptotic agent thapsigargin. Western blot analysis revealed major CaMK IV breakdown products of 40, 38, and 33 kDa. Digestion of control SH-SY5Y lysate with purified caspase-3 produced a 38-kDa CaMK IV fragment; digestion with purified calpain produced a major fragment of 40 kDa. Pretreatment with carbobenzoxy-Asp-CH2OC(O)-2,6-dichlorobenzene or Z-Val-Ala-Asp-fluoromethylketone was able to block the caspase-3-mediated production of the 38-kDa fragment both in situ and in vitro. Calpain inhibitor II similarly blocked formation of the calpain-mediated 40-kDa fragment both in situ and in vitro. Digestion of recombinant CaMK IV by other caspase family members revealed that only caspase-3 produces a fragmentation pattern consistent to that seen in situ. The major caspase-3 and calpain cleavage sites are respectively identified as PAPD176*A and CG201*A, both within the CaMK IV catalytic domain. Furthermore, calmodulin-stimulated protein kinase activity decreases within 6 h in thapsigargin-treated SH-SY5Y. The loss of activity precedes cell death.  相似文献   

19.
Seventeen patients who had cutaneous complications following pentazocine injections are presented. The mean age was 50 years; total daily pentazocine dose ranged from 60 to 2,400 mg; evidence of psychiatric illness was present in 94%, and previous drug or alcohol abuse was noted in 65%. Fifty-three percent of our series of patients had a medical or paramedical background. Eighteen percent had diabetes mellitus, and 65% had a personal or family history (or both) of diabetes. A hypothesis is presented for this association. Characteristic histologic findings included fibrosis of the dermis and panniculus, with vascular alterations, fat necrosis with granulomatous inflammation, and vascular thrombosis with occasional endarteritis. We emphasize that medical and paramedical personnel and patients with a personal or family history of diabetes should be added to the group of patients considered to be at special risk for cutaneous complications of pentazocine injections.  相似文献   

20.
Twelve drugs were studied with respect to their effects on inhbition of neuronal uptake of [3H]noradrenaline ([3H]NA) and on release of this amine from presynaptic nerve terminals. An in vitro method, using a crude synaptosomal homogenate prepared from rat whole brain, was employed. All drugs tested were found to produce some release of [3H]NA although tyramine was by far the most potent drug in this respect; tripelennamine and cocaine were observed to produce the least release. Studies of inhibition of NA uptake again demonstrated tyramine to be the most potent of the 12 drugs although in this case it did not differ significantly from cocaine and tripelennaine. The remaining compounds also showed decreased accumulation of [3H]NA and all 12 drugs produced uptake inhibition at a lower dose than that required for release of the amine. A correlation between releasing potency and lipophilicity of the compounds indicated that tyramine seemed to be acting in a different manner from the remaining compounds. A correlation between inhibitory potency and lipophilicity could be demonstrated for only six of the drugs, with tyramine, tripelennamine and cocaine showing the greatest deviation from this relationship.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号