首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
冷弯薄壁槽钢-混凝土组合梁受火试验研究   总被引:1,自引:0,他引:1  
对5个冷弯薄壁槽钢-混凝土组合梁试件进行在ISO-834标准火灾下的受火试验。试验中考虑了荷载水平、防火涂层厚度和槽钢截面高度等参数的影响。试验结果表明:荷载水平、防火涂层厚度和槽钢截面高度是影响组合梁抗火性能的主要因素,其他因素影响很小;在ISO-834标准火灾下,以跨中挠度δ=l/25作为组合梁达到耐火极限的判别标准是合适的;填充混凝土可有效提高组合梁的整体刚度和延性,使其在高温下直至破坏仍可保持完整性,没有出现高温局部屈曲现象;在槽钢上直接涂刷防火涂层不能保证其与槽钢表面的紧密结合,需要改进组合梁的防火涂层施工工艺;试验结果验证了有限元分析结果的正确性。  相似文献   

2.
An efficient nonlinear 3D finite element model has been developed to investigate the structural performance of composite slim floor steel beams with deep profiled steel decking under fire conditions. The composite steel beams were unprotected simply supported with different cross-sectional dimensions, structural steel sections, load ratios during fire and were subjected to different fire scenarios. The nonlinear material properties of steel, composite slim concrete floor and reinforcement bars were incorporated in the model at ambient and elevated temperatures. The interface between the structural steel section and composite slim concrete floor was also considered, allowing the bond behaviour to be modelled and the different components to retain its profile during the deformation of the composite beam. Furthermore the thermal properties of the interface were included in the finite element analysis. The finite element model has been validated against published fire tests on unprotected composite slim floor steel beams. The time–temperature relationships, deformed shapes at failure, time–vertical displacement relationships, failure modes and fire resistances of the composite steel beams were evaluated by the finite element model. Comparisons between predicted behaviour and that recorded in fire tests have shown that the finite element model can accurately predict the behaviour of the composite steel beams under fire conditions. Furthermore, the variables that influence the fire resistance and behaviour of the unprotected composite slim floor steel beams, comprising different load ratios during fire, cross-section geometries, beam length and fire scenarios, were investigated in parametric studies. It is shown that the failure of the composite beams under fire conditions occurred for the standard fire curve, but did not occur for the natural fires. The use of high strength structural steel considerably limited the vertical displacements after fire exposure. It is also shown that presence of additional top reinforcement mesh is necessary for composite beams exposed to short hot natural fires. The fire resistances of the composite beams obtained from the finite element analyses were compared with the design values obtained from the Eurocode 4 for composite beams at elevated temperatures. It is shown that the EC4 predictions are generally conservative for the design of composite slim floor steel beams heated using different fire scenarios.  相似文献   

3.
为研究钢梁残余应力对预应力连续组合梁抗火性能的影响,建立了预应力连续组合梁在高温下非线性升温过程受力行为的有限元模型。通过考察梁的破坏形式、跨中挠度、预应力拉索张力、截面弯矩以及梁的曲率等关键参数随温度的变化,得到不同残余应力模式对组合梁抗火性能的影响机理。分析结果表明:残余应力的分布并不总是对预应力钢-混凝土组合梁的高温性能产生不利影响,腹板具有初始残余拉应力分布模式的预应力钢-混凝土组合梁高温下的挠度相对最小;残余应力主要通过影响截面正应力分布来影响钢梁的截面刚度;在临界状态时,残余应力对组合梁截面刚度的影响不明显;不同残余应力模式对高温下预应力钢-混凝土组合梁的截面抗弯刚度影响不同;当预应力钢-混凝土组合梁的初始残余应力模式以腹板全截面拉应力为主时,预应力钢-混凝土组合梁跨中截面抗弯刚度最大;当残余应力对组合梁跨中截面抗弯刚度有利时,梁跨中截面处中和轴位置比无残余应力影响时较高。  相似文献   

4.
Due to high costs, a fire resistance test of a load-bearing structural element is usually limited to one test specimen — in a few countries, to two test specimens. Accordingly, there are no possibilities of evaluating the test results statistically.For a single test specimen, the actual quality of the structural material represents a random sample from a wide variety. This applies also to the initial imperfections of the structural elements. In consequence of this, a standard fire resistance test is generally carried out on a test specimen with a load-bearing capacity which is greater — most often significantly greater — than the load-bearing capacity related to the characteristic values of the mechanical material strength and of the imperfections of the structural member. In current practice, no corrections of the test results with respect to this are made.In a conventional analytical design, a determination of the load-bearing capacity of a structure at room temperature conditions is based on the characteristics values of the strength and imperfections. Extended to a structural fire engineering design, this procedure will give an analytically determined fire resistance of a load-bearing structural element which is lower — normally essentially lower — than the corresponding value derived from a standard fire resistance test.Available methods for a simplified calculation of the temperature of fire exposed steel structures are, as a rule, based on the assumption of a uniformly distributed temperature structure at each time of fire exposure. The ECCS Recommendations for an analytical design of steel structures exposed to a standard fire follow this kind of approach. For certain types of steel structures, for example, beams with a slab on the upper flange, a considerable temperature variation arises over the cross section as well as in the longitudinal direction during a fire resistance test. A simplified, analytical method, which neglects this influence, gives a further underestimation of the fire resistance in relation to the corresponding result obtained in a standard fire resistance test.The described discrepancies between an analytical and an experimental determination of the fire resistance are further discussed and analysed in Sections 2 and 3, with particular reference to different types of steel structures. The discussion is focussed on the loading and restraint conditions, the scatter of material properties and geometrical imperfections, and the temperature variation over the structure or structural element. The discussion is summarized in Section 4 and alternative methods of correction are outlined briefly for obtaining an improved consistency between the analytical and the experimental approaches.In Section 5, one of these methods is further developed to a design basis which can be applied easily in practice. Principally, the method is characterized by a correction of the analytically determined load-bearing capacity, based on the characteristic value of the structural material properties, the characteristic value of the imperfections of the structure, and a uniformly distributed steel temperature across and along the structure. Two different sequences of the design procedure are dealt with, defined according to Figs. 10 and 11. The resultant correction factors, ? and κ, belonging to the respective sequences, are given by Figs. 8 and 12 for columns, isostatic beams, and hyperstatic beams. The straight line curves in Figs. 9 and 13 show corresponding, simplified relationships for the ? and κ factors.The derived method of correction must be characterized as an approximate approach. This is in consequence of the present state of knowledge, which does not allow a solution of high accuracy. The task to develop a correction procedure which leads to improved consistency between an analytically and an experimentally determined fire resistance, should also be seen in the context of the inadequate reproducibility of the standard fire resistance test.  相似文献   

5.
通过8个组合柱短试件的温度场测试和10个组合柱长试件的耐火性能试验,研究了ISO 834标准升温曲线下型钢-钢管混凝土柱的温度场分布和耐火极限。试验参数包括截面形状、受火方式、轴压比和配骨指标。试验结果表明:配置型钢后钢管混凝土柱截面内升温速率会略有提高,内置型钢对截面温度场分布影响不大,但是钢管混凝土柱的耐火极限会大幅度提高;以四面受火的方形截面试件的耐火极限为参照,三面受火时耐火极限变化不大,两面受火和单面受火时耐火极限大幅度提高,圆形截面试件1/2表面受火时耐火极限亦明显提高;轴压比从0.3增大到0.4时,试件耐火极限显著降低。经过合理的设计,无防火保护的型钢 钢管混凝土柱可以达到3 h的一级耐火极限要求。  相似文献   

6.
轻钢-混凝土组合梁抗火计算方法   总被引:1,自引:0,他引:1  
毛小勇 《江苏建筑》2005,(1):21-22,27
应用ANSYS软件计算了轻钢-混凝土组合梁截面在标准升温模式下的温度场,并分析了各参数对截面温度场的影响;然后利用其后处理功能将温度场计算结果导入轻钢-混凝土组合梁抗火计算程序,对其抗火全过程曲线和抗力折减系数进行了分析。结果表明:由于混凝土的热作用,钢梁的温度明显低于无混凝土时的裸钢构件;影响全过程曲线和抗力的折减系数的主要参数是梁高和钢梁厚度,而其它参数影响较小;抗力折减系数的变化在后期比前期剧烈一些。  相似文献   

7.
This paper presents the results of fire resistance tests on carbon fiber-reinforced polymer (CFRP) strengthened concrete flexural members, i.e., T-beams and slabs. The strengthened members were protected with fire insulation and tested under the combined effects of thermal and structural loading. The variables considered in the tests include the applied load level, extent of strengthening, and thickness of the fire insulation applied to the beams and slabs. Furthermore, a previously developed numerical model was validated against the data generated from the fire tests; subsequently, it was utilized to undertake a case study. Results from fire tests and numerical studies indicate that owing to the protection provided by the fire insulation, the insulated CFRP-strengthened beams and slabs can withstand four and three hours of standard fire exposure, respectively, under service load conditions. The insulation layer impedes the temperature rise in the member; therefore, the CFRP–concrete composite action remains active for a longer duration and the steel reinforcement temperature remains below 400°C, which in turn enhances the capacity of the beams and slabs.  相似文献   

8.
This paper presents a strategy for achieving the required fire resistance in composite floor systems through the use of steel fiber reinforced concrete (SFRC). Both experimental and numerical studies were carried out to evaluate the fire performance of floor systems comprising unprotected steel beams and concrete/SFRC deck slabs. The results from these studies show that SFRC composite deck slabs develop significant tensile forces (through tensile membrane action) that transfer load from fire-weakened steel beams to other cooler parts of the structure. Preliminary results indicate that the combined effect of composite construction, tensile membrane action, and the improved properties of SFRC under realistic fire, loading, and restraint conditions can provide sufficient fire resistance in steel beam-concrete deck slabs without the need for external fire protection on the floor assembly.  相似文献   

9.
利用自行研制的火灾试验炉,对两榀两层两跨组合钢框架在同跨火灾作用下的性能进行了试验研究,火灾工况包括:梁、板、柱同时受火、节点不受火,梁、板受火而柱、节点不受火两种。试验中量测了各种工况的炉温,框架梁、柱及混凝土楼板中的温度分布及框架水平和竖向位移。结果表明:钢柱四面受火时,钢柱翼缘、腹板的温度相差很小;对于钢梁,除了与混凝土接触的上翼缘外,其余H型钢梁的裸露部分温度分布基本均匀;混凝土内部的温升一般滞后于钢梁,钢筋混凝土板对钢梁有约束作用,升温时混凝土限制钢梁的膨胀、降温时则限制钢梁的收缩,致使钢筋混凝土板中出现很多裂缝;组合梁的抗火性能明显优于钢柱,工程中应对钢柱和节点实施保护;钢框架未受火部分对受火部分约束很大,导致受火跨边柱与中柱的变形不对称,同样也产生了内力重分布。  相似文献   

10.
A new and simplified model to analyse the thermal response of steel I-beams in composite construction exposed to the standard fire is presented. The model includes a convection and radiation heat transfer module, a resistance-capacitance formulation for heat conduction in the steel beam and a correlation for estimating heat conduction from the upper flange to the concrete slab. The radiation component accounts for the emission and absorption of radiation by the main combustion products of the standard fire. Heat transfer to the concrete is estimated using computer modelling of a number of case studies. The two dimensional I-beam section is represented by three lumped masses concentrated at nodes located at the centres of the lower flange, web and upper flange and connected by conduction paths. Comparison between measured and computed temperature profiles shows good correlation for most of the case studies investigated.  相似文献   

11.
根据现行《建筑钢结构防火技术规范》中固支组合梁抗火承载力验算方法,提出了固支组合梁抗火设计的临界温度法,并给出了临界温度的计算方法,对影响固支组合梁临界温度的参数进行了分析。研究发现:确定荷载比下固支组合梁的钢梁截面、材料强度、有效宽度等对临界温度的影响较小,而耐火极限和楼板厚度对固支组合梁临界温度影响较大。给出了一般固支组合梁不同楼板厚度、不同耐火极限下,不同荷载比对应的临界温度和防火保护厚度的计算方法,可供工程设计使用。  相似文献   

12.
Computer software has been developed to predict the structural response of asymmetric slim floor steel beams, used with composite concrete floor slabs consisting of deep profiled steel decking. Comparisons between predicted behaviour and that recorded in standard fire tests, showed that the software is very accurate. By including the rotational stiffness of the beam-to-column connections, the fire resistance of the beam is significantly enhanced. This is mainly due to the connections retaining most of their strength during a fire, since they are fully encased in concrete as a consequence of this type of construction. The analyses presented in this paper indicate that it may be possible to increase the fire resistance of the steel beams from 60 to 90 minutes, by including the connection behaviour. The software has also been used to aid the design of a future large-scale fire test on the asymmetric slim floor system. Predictions of the structural response have been presented. These will enable the fire load and ventilation conditions in the test to be designed. In addition the software has been used to identify the minimum amount of fire protection that is required for the supporting columns.  相似文献   

13.
为研究采用防火装饰一体化构造的钢梁在火灾下的温度场和承载力,通过基于ANSYS 软件建立的分析模型对不同截面尺寸和不同耐火极限的钢梁进行抗火性能研究,并给出了计算钢梁承载力的简化公式,公式计算结果与有限元结果吻合情况较好。  相似文献   

14.
为研究铰接叠合板组合梁的抗火性能,对2个铰接足尺叠合板组合梁进行了恒载升温试验研究和数值模拟.通过试验得到了叠合板组合梁的温度分布、位移变化和破坏模式.研究结果表明:叠合板的温度分布沿板厚方向逐渐降低,距受火面40 mm以下区域受火影响最为明显.叠合板与钢梁之间存在温度梯度,叠合板对钢梁上翼缘变形有约束;叠合板板顶裂缝...  相似文献   

15.
《Fire Safety Journal》2006,41(7):509-522
Current design codes for fire resistance of structures are based on isolated member tests subjected to standard fire conditions. Such tests do not reflect the behaviour of a complete building under either normal temperature or fire conditions. Many aspects of behaviour occur due to the interaction between members and cannot be predicted or observed in tests of isolated elements. Performance of real structures subject to real fires is often much better than that predicted from standard tests due to structural continuity and the provision of alternative load paths.This paper reports on the results of a collaborative research project (Tensile membrane action and robustness of structural steel joints under natural fire, European Community FP5 project HPRI—CV 5535) involving the following institutions: Czech Technical University (Czech Republic), University of Coimbra (Portugal), Slovak Technical University (Slovak Republic) and Building Research Establishment (United Kingdom). It consists of an experimental programme to investigate the global structural behaviour of a compartment on the 8-storey steel–concrete composite frame building at the Cardington laboratory during a BRE large-scale fire test, aimed at the examination of the temperature development within the various structural elements, the corresponding (dynamic) distribution of internal forces and the behaviour of the composite slab, beams, columns and connections.  相似文献   

16.
外包角钢加固法可有效提高构件承载力且不显著增大构件截面,在实际工程中得到广泛应用。由于构件承受的荷载较原构件提高,加固角钢靠近外部受火面,且角钢外部保护层在高温下极易剥落,导致加固柱的耐火能力较差。本文进行了4根外包角钢加固钢筋混凝土柱的抗火性能试验,获得了构件截面温度场分布、变形-时间曲线、构件破坏模式和耐火极限,考察了荷载比和偏心率对耐火极限的影响。同时,建立了有限元分析模型,对外包角钢加固钢筋混凝土柱的抗火性能进行了模拟。试验结果表明:①环氧树脂在高温下汽化、自燃和碳化,对构件截面温度场影响较大|②砂浆保护层在高温下与钢材粘结较差,剥落严重|③构件的耐火极限随着荷载比和偏心率的增大而减小|④正常使用情况下,未加防火保护的外包角钢加固钢筋混凝土柱耐火能力达不到规范所要求的耐火极限。有限元分析结果与试验结果基本吻合,可用于进一步的参数分析。  相似文献   

17.
为研究高温火直接作用下钢梁的抗火性能,对其进行了高温火直接作用试验;同时,以受热时间作为变化参数,对比分析了高温火直接作用和按ISO 834标准升温过程钢梁的轴力、跨中挠度及耐火时间。结果表明:高温火直接作用与按ISO 834标准升温下,钢梁破坏端面的微观组织及升温过程的受力和变形存在明显差异;无论有无防火涂层的保护,当温度800℃时,高温火直接作用下钢梁的最大轴力比按ISO 834标准升温的增大76.9%以上;同时,防火涂层厚度对钢梁的耐火时间也有影响,无防火涂层时,钢梁的耐火时间小于20min;有防火涂层保护时,随防火涂层厚度增厚,两种高温作用下,钢梁的耐火时间相近,但防火涂层厚度不足15mm时,耐火时间相差20%以上;当防火涂层厚度为15mm时,在温度约800℃高温火直接作用下,其耐火时间为26min。  相似文献   

18.
A concrete-filled double skin tube (CFDST) is an innovative steel and concrete composite construction with the potential to be used as columns in high-rise buildings. Self-consolidating concrete (SCC) can offer convenience for construction and ensure the construction quality of CFDST columns. There is very limited knowledge about the fire performance of CFDST columns, which is a key issue in the application to high-rise buildings. This paper reports an experimental investigation into the fire behaviour of CFDST stub columns filled with SCC and fibre reinforced SCC. The study aims to obtain thermal and structural responses of the stub columns through standard fire testing. Details are given in terms of the failure mode, temperature distribution, critical or limiting temperature and fire resistance. It was found that the added fibre does not affect the temperature distribution whereas the increased concrete thickness and outer tube perimeter reduces the temperature in CFDST specimens. The added steel fibre increases the fire resistance of CFDST stub columns especially for load levels less than 0.6. The critical or limiting temperature for CFDST sections was found to be higher than for CFST (concrete-filled steel tube) or unfilled tubes.  相似文献   

19.
This paper investigated the fire behavior of steel-concrete composite beams (SCB) and partially encased steel-concrete composite beams (PEB) through numerical analysis. The numerical models established by the software ABAQUS were verified against experimental results. Parametric studies were performed to study the influences of load ratio, strength of concrete and steel, width of concrete slab, size of steel beam, fire protection layer, and degree of shear connection on the fire behavior of SCB and PEB. The analysis results show that the deformation stages of SCB and PEB under fire both go through four stages: elastic, elastic–plastic, plastic small deformation, and plastic large deformation. The web of SCB experiences a tension–compression–tension process under fire, and the bottom flange of PEB may even change from tension to compression at a lower load ratio. The failure mode of PEB, whether the concrete is crushed, depends on the load ratio. When SCB fails, the concrete is crushed and only the bottom flange of the steel beam yields. Under various parameters, the fire resistance of SCB is about 22 min, while the fire resistance of PEB is 82–93 min under a load of 0.4. When the load ratio increases from 0.2 to 0.6, the fire resistance of SCB decreases by 8 min, while that of PEB decreases by 110 min. To meet class I fire resistance rating under a normal service load ratio of 0.4, additional measures for PEB are still required, and at least 15 mm of fire protection layer is required for the steel beam of SCB. Finally, considering the temperature internal fore, a coefficient related to the fire time was introduced to modify the formula of ultimate flexural capacity of SCB and PEB, which showed good accuracy.  相似文献   

20.
由于铝合金材料的密度和比热容与钢材相比差别较大,在ISO 834标准升温条件下,铝合金构件的升温过程与钢构件存在明显差异.为了得到有轻质保护层铝合金构件的升温计算简化公式,采用增量法计算了ISO 834标准升温下的轻质保护层铝合金构件升温曲线,并对数据进行非线性拟合分析,得到了有轻质保护层铝合金构件升温计算简化公式,进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号