首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
建立了泡沫铝填充薄壁方管的有限元模型,利用试验对泡沫铝填充薄壁方管的有限元模型的准确性进行了验证。研究了诱导结构的类型和数量对泡沫铝填充薄壁方管的轴向压溃变形模式、初始峰值力、压溃力效率和能量吸收能力的影响,结果表明:设计诱导结构可以提高能量吸收能力、减小初始峰值力、增加压溃力效率,甚至可以改变压溃变形模式。沿薄壁方管的轴向方向合理地增加诱导结构的数量,可以进一步的减小初始峰值力、增加压溃力效率、提高结构的能量吸收能力。通过等级评价方法,确定沿薄壁方管的轴向方向设计4组诱导四角方孔可以使泡沫铝填充薄壁方管获得最佳的综合吸能特性。  相似文献   

2.
研究薄壁圆锥管轴向压缩吸能特性有助于其合理广泛应用于抗冲击、抗振动结构中。轴向倾角是使得圆锥管轴向压缩性能有别于直管的主要因素。当轴向倾角小于临界角度时,圆锥管平均轴向压缩力随倾角增加而变大但最大初始轴力会线性减小;吸能稳定因子随倾角增加而提高,但是比吸能却相应非线性降低。圆锥管在轴向压缩时过程中存在三种典型变形模式,分别为“钻石-堆叠”模式,“钻石-嵌套”模式及“环形-嵌套”模式,通过对“环形-嵌套”模式变形过程的观测及变形机理分析,建立了相应的理论模型,基于该理论模型给出了圆锥管“环形-嵌套”模式变形时吸能特性的预测方法。  相似文献   

3.
该文提出了三种新型的诱导结构设计方案来降低薄壁方管结构在轴向载荷作用下的初始屈曲载荷峰值。诱导结构设计在方管的加载端,在压缩开始的时候起作用,并且不会显著影响结构在正常工作时的强度和刚度。利用AA 6063 T6 铝合金薄壁方管进行了一系列准静态和动态试验来研究了具有诱导结构的方管在轴向压缩时的能量吸收性能,给出了完整薄壁铝方管和具有诱导结构的薄壁铝方管的载荷位移曲线,并进行了比较。实验发现,三种诱导结构均可有效降低屈曲时的初始载荷峰值、提高方管承载吸能平稳性。  相似文献   

4.
采用仿真和试验相结合的方法探讨复合材料薄壁圆管在准静态轴向压缩载荷下的失效吸能特性和吸能机理。首先,建立复合材料薄壁圆管"层合壳"有限元模型,通过显式动力学方法求解其在准静态轴向载荷下的压溃失效力学行为。仿真与试验结果在圆管轴向压溃变形过程、初始峰值载荷、平均压溃载荷及比吸能等主要吸能参数上具有很好的一致性,验证了"层合壳"复合材料圆管有限元模型和建模方法的有效性。其次,采用解析模型与仿真分析方法分别对[0/90]3s、[0/90/02/902]s、[03/903]s三种不同铺层顺序的复合材料圆管的屈曲载荷与吸能特性进行了对比,进一步分析了铺层顺序对圆管失效吸能特性的影响。研究表明,0°与90°铺层交替程度对复合材料圆管的吸能特性影响较大,保证纤维失效方式在结构宏观失效中占主导地位能够提高材料失效吸收能量。  相似文献   

5.
This article attempts to increase the crashworthiness characteristics of energy absorbers. It is found that the effect of the bi-tubular arrangement on the energy absorption and peak force is nonlinear. This nonlinearity is somewhat related to friction but is mostly related to the changing of buckling modes. Therefore, it is possible to reach higher Specific Absorbed Energy (SAE) in the bi-tubular case than with two tubes since the weight is the same in both arrangements while the energy absorption is higher in the bi-tubular case. To exploit this, multi-objective optimization of bi-thin walled cylindrical aluminium tubes under axial impact loading is performed. The absorbed energy and the SAE are considered as the objective functions while the maximum crush load is regarded as a constraint. Finally, the optimal dimensions of tubes are found in order to maximize the SAE and energy absorption for a specified maximum crushing force.  相似文献   

6.
为了提高薄壁结构的比吸能,通过环形编制技术制备不同编织角度的碳纤维增强聚合物复合材料-铝(CFRP-Al)方管。对不同编织角度、管长和管厚的CFRP-Al方管进行准静态轴向压缩试验,研究CFRP复合材料编织角度对CFRP-Al方管变形模式和比吸能的影响。结果表明,CFRP复合材料可以降低薄壁管的柔度,从而阻止整体欧拉失稳变形模式;大编织角度CFRP复合材料可以有效承担因薄壁管折叠产生的横向拉力,从而阻止薄壁管折角撕裂;此外,随着编织角度增加,CFRP-Al方管的比吸能随之增大。   相似文献   

7.
海底管线通常具有初始缺陷,高温高压作用下管线会在初始缺陷的基础上进一步变形最终发展为整体屈曲。该文以具有初始反对称双拱缺陷的海底管线为研究对象,基于理想管线整体屈曲的变形假设,通过求解管线屈曲前后的能量平衡方程,得到了管线发生二阶与四阶模态整体屈曲的解析解,建立了整体屈曲过程中管内轴力与屈曲波长间的关系。通过研究屈曲段轴力与滑动段轴力的变化规律,揭示了经典解析解得到的管线整体屈曲前轴力随幅值的变化曲线出现动态跳转的机理。工程算例分析表明,相同条件下管线更容易发生二阶模态的整体屈曲;当屈曲段轴力的释放速率大于滑动段摩阻力的累积速率时,才会出现动态跳转的问题。  相似文献   

8.
The usage of composite materials have been improving over the years due to its superior mechanical properties such as high tensile strength, high energy absorption capability, and corrosion resistance. In this present study, the energy absorption capability of circular jute/epoxy composite tubes were tested and evaluated. To induce the progressive crushing of the composite tubes, four different types of triggering mechanisms were used which were the non-trigger, single chamfered trigger, double chamfered trigger and tulip trigger. Quasi-static axial loading test was carried out to understand the deformation patterns and the load-displacement characteristics for each composite tube. Besides that, the influence of energy absorption, crush force efficiency, peak load, mean load and load-displacement history were examined and discussed. The primary results displayed a significant influence on the energy absorption capability provided that stable progressive crushing occurred mostly in the triggered tubes compared to the non-triggered tubes. Overall, the tulip trigger configuration attributed the highest energy absorption.  相似文献   

9.
吴章斌  桂良进  范子杰 《工程力学》2015,32(10):183-190
对AZ31B镁合金挤压矩形截面管进行准静态轴向压溃试验,研究其破坏模式和吸能特性,并探索管件长度、截面尺寸、倒角诱导因素等对吸能特性的影响。结果发现镁合金矩形管轴向压溃时存在两种破坏模式:整体破坏模式和渐进破坏模式,无倒角时管件发生整体破坏,而管端有倒角时主要从倒角端开始发生渐进破坏。渐进破坏模式有利于管件吸收能量。镁合金管件具有良好的吸能特性,其比吸能优于钢管、铝合金管和复合材料管。  相似文献   

10.
In this paper, we describe a numerical investigation on the quasi-static axial crush performance of aluminum–composite hybrid tubes containing a filament-wound E-glass fiber-reinforced epoxy over-wrap around square aluminum tubes. The fiber orientation angle in the overwrap was varied between [±30°] and [90°] with respect to the tube’s axis. The quasi-static axial crush resistance of the hybrid tubes are compared in terms of the maximum load, mean crush load, crush energy and specific energy absorption. The deformation modes of these tubes are also described. An empirical equation is proposed for predicting the mean crush force of hybrid tubes.  相似文献   

11.
Herein, a detailed review of the past studies carried out on crushing and energy absorption behaviour of hollow and foam filled tubes under axial compression is presented. Importance of such investigation is discussed for understanding the research need and to develop suitable alternatives. The focus of review is the deformation mechanism and energy absorption of hollow circular and square tubes, foam filled circular and square tubes notably. Comprehensive review on the various deformation modes for these tubes under axial impact load and effect of foam filling is presented. The review includes the various parameters affecting the peak load and energy absorption. Although various other forms of energy absorbing materials and structures exist such as composites, multi-wall tubes and honeycombs, these are not within the scope of present review. This paper intends to provide assistance in design and development of empty and foam filled tubes as effective energy absorbers. Further, this paper provides the necessary information for designers to understand the deformation of such tubes.  相似文献   

12.
Summary This study, with the emphasis on experiments, investigates the applicability of aluminium foam as filler material in tubes made of mild steel having square or circular cross sections, which are crushed axially at low loading velocities. In addition to the experiments finite element studies are performed to simulate the crushing behaviour of the tested square tubes, were a crushable foam material model is shown to be suitable for describing the inelastic response of aluminium foam with respect to the considered problems. The experimental results for the square tubes reveal efficiency improvements with respect to energy absorption of up to 60%, resulting from changed buckling modes of the tubes and energy dissipation during the compression of the foam material itself. The principal features as well as the changes of the crushing process due to filling can also be studied by the numerical simulations. A global failure mechanism due to a high foam density can be observed for filled circular tubes. Aluminium foam is shown to be a suitable material for filling thin-walled tubular steel structures, holding the potential of enhancing the energy absorption capacity considerably, provided the plastic buckling remains characterized by local modes.Dedicated to Prof. Dr. Dr. h. c. Franz Ziegler on the occasion of his 60th birthday  相似文献   

13.
Dynamic elastic–plastic buckling of thin-walled square tubes is studied from the viewpoint of elastic–plastic stress wave propagation, which originates from an axial impact loading. The influence of the impact velocity and the striking mass on the development of the buckling shape is discussed when considering the transient deformation process. It is shown that the maximum load, which results from a high velocity impact load and occurs at t=0, is a function of the impact velocity and is related to the speed of the elastic–plastic stress waves propagating along the tube. The predictions for the initiation of buckling based on a numerical simulation of the axial impact of strain rate insensitive square tubes using the FE code ABAQUS show good agreement with the results from experiments on aluminium alloy tubes impacted at various initial velocities. A comparison between the buckling initiation in square tubes and geometrically equivalent circular tubes reveals differences in the response, which are attributed to the stress wave propagation phenomena and to the structural differences between the two structures.  相似文献   

14.
The response of a novel lightweight panel design under blast loading is numerically investigated. The sandwich-type panel uses thin-walled square tubes as the core material with mild steel outer plates. A parametric study is carried out with ABAQUS/Explicit to examine the effects and interaction between design variables in three different tube layouts. Tube position, thickness and aspect ratio as well as top plate thickness are varied. Buckling stability and absorption performance are shown to be highly sensitive to tube placement due to interaction effects between the top plate and tubes. For each panel an optimal tube positioning is obtained corresponding to nearly perfect axial progressive symmetric tube buckling. Tube thickness is shown to influence the onset of buckling and hence affects the stability of the core, while energy absorption performance is also highly configurable. Tube aspect ratio shows only a small effect on core buckling stability and energy absorption. Top plate thickness influences absorber performance significantly while having a small effect on buckling stability. A simple theoretical analysis is presented and shows reasonable agreement with the numerical simulations.  相似文献   

15.
An experimental investigation was carried out to study the behaviour of square thin-walled aluminium extrusions in alloy AA6060 subjected to axial loading. Both static and dynamic tests were performed and the primary variables were the wall thickness and temper of the square tubes and the impact velocity of the projectile. The mass of the projectile in the dynamic tests was 56 kg, while the impact velocity was in the range 8–20 m/s. The experimental results show that a symmetric deformation mode is formed for the static tests with a lobe number that is a function of the temper. In the dynamic tests a mixture of modes is found. The experimental results also show that the dynamic mean force is significantly higher than the corresponding static force for the same axial displacement, which indicates a strong inertia effect. For initially straight square tubes, the mean load ratio between a dynamic and a static test is a decaying function with respect to the axial displacement. However, by introducing initial geometrical imperfections prior to dynamic testing an almost constant ratio is found.  相似文献   

16.
研究薄壁开孔圆管的轴向耐撞性有助于其在缓冲、吸能领域的广泛应用。通过分别考虑开孔区域和未开孔区域的能量吸收特征并引入材料的应变强化效应,根据塑性铰理论建立了轴向荷载下开孔圆管轴对称压溃模式的理论模型,得到了弯曲应变能、拉伸应变能、平均压溃力、比吸能的解析表达式。分析结果表明:该理论模型的预测结果与数值和实验结果相吻合;正则化平均压溃力会随半皱褶长细比的降低而显著增加;单层孔数对正则化平均压溃力的影响会随管壁厚度的增加或孔半径的减小而降低;比吸能可通过减少单层孔数或减小孔半径提高。  相似文献   

17.
锥形泡沫填充结构结合了泡沫填充结构与锥形结构的优势,具有优异的吸能性和抵抗失稳变形的能力。研究了具有不同横截面的泡沫填充多边形单锥管(FSPTTs)与泡沫填充多边形双锥管(FBPTTs)在四种冲击角度下的耐撞性。采用多准则评估方法(COPRAS)对不同横截面的泡沫填充单锥管与泡沫填充双锥管的综合耐撞性进行了评估。评估表明:综合考虑多种冲击角度时,圆形截面泡沫填充单锥管较其他截面泡沫填充单锥管具有更好的耐撞性;圆形截面泡沫填充双锥管较其他截面泡沫填充双锥管具有更好的耐撞性。最后,针对圆形截面泡沫填充单锥管与圆形截面泡沫填充双锥管,以最大比吸能和最小峰值力为目标,采用非支配遗传算法对这两种结构在四种冲击角度下进行了多目标优化。结果表明:当冲击角度从0°变化到10°时,两种结构的Pareto曲线变化不大,而当冲击角度从10°变化到30°时,冲击角度对Pareto曲线形状和位置有显著影响;在冲击角度为0°和10°时,圆形截面泡沫填充双锥管的耐撞性优于圆形截面泡沫填充单锥管,而在冲击角度为20°和30°时,圆形截面泡沫填充单锥管的耐撞性优于圆形截面泡沫填充双锥管。实际应用中,可以根据工程需要选择合适的结构。  相似文献   

18.
将泡沫填充圆管的平均压溃载荷视为圆管、泡沫及圆管与泡沫相互作用三部分之和, 基于作者提出的直链塑性铰改进模型, 研究了两种泡沫变形模式对泡沫填充圆管准静态压溃行为的影响, 得到了新的最优屈曲半波长和平均压溃载荷的理论计算公式, 并研究了两种泡沫变形模式下, 偏心率和塑性角参数对最优屈曲半波长和平均压溃载荷的影响。结果表明, 泡沫变形模式 Ⅰ 下的平均压溃载荷略高于泡沫变形模式 Ⅱ 下的相应值, 泡沫变形模式对最优屈曲半波长影响较大; 与文献[14]相比, 所得平均压溃载荷理论预测值与试验结果吻合得更好。   相似文献   

19.
The crush response of glass fiber reinforced plastic tubes, of cylindrical, square and rectangular section, made from unidirectional tape with various alternating 0° and 90° lay-ups, and also of small samples cut from these tubes, was studied with particular reference to the effects of the geometry of the crush trigger initiator. It was found that the propagation of delamination cracks contributed little to the energy absorption capacity, most of the crush resistance being derived from the development of kink bands in the fiber structure. The crush resistance of square tubes with thinner walls was largely provided by the corners. As the wall thickness increased, the planar portions contributed more to the crush resistance. Approximate estimates of the specific energy may be made from crush tests of simple flat sections. The trigger geometry alters the energy absorption capacity by the extent to which it generates deformation flaws which can then propagate within the wall structure.Softer crush anvils reduce the effectiveness of the trigger crush initiator and can lead to global failure of the section, rather than to stable, progressive crush.  相似文献   

20.
Composite tubular structures are of interest as viable energy absorbing components in vehicular front rail structures to improve crashworthiness. Desirable tools in designing such structures are models capable of simulating damage growth in composite materials. Our model (CODAM for COmposite DAMage), which is a continuum damage mechanics based model for composite materials with physically based inputs, has shown promise in predicting damage evolution and failure in composites. In this study, the model is used to simulate the damage propagation, failure morphology and energy absorption in triaxially braided composite tubes under axial compression. The model parameters are based on results from standard and specialized material testing and a crack band scaling law is used to minimize mesh sensitivity (or lack of objectivity) of the numerical results. Axial crushing of two-ply and four-ply square tubes with and without the presence of an external plug initiator are simulated in LS-DYNA. Refinements over previous attempts by the authors include the addition of a pre-defined debris wedge, a distinguishing feature in tubes displaying a splaying mode of failure, and representation of delamination using a tiebreak contact interface that allows energy absorption through the un-tying process. It is shown that the model adequately predicts the failure characteristics and energy absorption of the crushing events. Using numerical simulations, the process of damage progression is investigated in detail and energy absorptions in different damage mechanisms are presented quantitatively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号