首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper examines the influence of molecular oxygen on the adsorptive capacity of GAC. A new experimental procedure for determining adsorption isotherms is introduced. This procedure, denoted as “anaerobic”, differs from the currently used techniques, denoted as “aerobic”, in that oxygen is repeatedly purged from the test environment. The results show that the capacity of GAC for the retention of o-cresol can increase up to 3-fold in the presence of oxygen when compared to the anaerobic capacity. The same trend is observed for the adsorption of phenol and 3-ethylphenol. It is shown that this increase in capacity cannot be attributed to biological degradation of these adsorbates in the presence of oxygen. It is speculated that this phenomenon is due to some chemical reactions between the adsorbates and molecular oxygen that are catalyzed by the activated carbon surface and occur at a different time scale than physical adsorption. Initial portions of breakthrough curves for o-cresol are very accurately predicted using capacities depicted by the anaerobic isotherm, while the total GAC adsorptive capacity for o-cresol, as determined from breakthrough experiments, appears to agree closely with the capacity predicted from the aerobic isotherm.  相似文献   

2.
Activated carbon was used for the treatment of waste water, and a study made of the fixing-properties of the adsorbent and the part played by micro-organisms. The process of “fixing” remains to be demonstrated because it has not yet been proved that bacteria are fixed on carbon. Study of the biological mechanism of activated carbon was carried out in three stages. The first was a survey of the adsorption on this material of various products present in waste water [amino-acids, enzymes, total organic matter (COD)]. In the course of these tests, the part played by the micro-porosity of activated carbon in regard to such molecules was observed. In the second stage, by using various techniques (electron microscope, scanning and transmission, X-ray fluorescence, Castaing micro-gauge), we determined the part played by fixation-spots initially present on carbon (surface functions, heavy metals) during bacterial development. In the third stage, we correlated the eliminated organic pollution with the bacterial mass present on the adsorbing material.The conclusions drawn were that the micro-porosity of carbon does not play a fundamental part in the adsorption of organic matter in sewage, but it does come into play in the adsorption of certain molecules taken separately (amino-acids, enzymes), and that the presence of fixation-spots (metals, surface functions) can have some influence during bacterial development. Experiments are in progress to determine the part played by the specific surface in regard to the adsorbable molecules and its correlation with the bacterial mass and also, to observe the part played the adsorbing material and the bacteria in regard to the non-adsorbable molecules (ethanol, methanol).  相似文献   

3.
活性炭吸附用于城市污水地下回灌技术的研究   总被引:5,自引:2,他引:5  
通过静态吸附试验比较与Crittenden计算模型分析,选择GH-16型粒状活性炭对北京高碑店污水处理厂二级出水进行深度处理试验。结果表明:GH-16型活性炭的净化效果存在阈值,约25%的DOC不能被吸附,不被吸附的主要是分子量〉3000u的有机物。对以UV254表征的有机物去除效果最好,分子量〈1000u的弱极性有机物易被微孔吸附且吸附容量,对以AOX表征的极性有机物去除效果较差。二级出水经活性  相似文献   

4.
Wang H  Ho L  Lewis DM  Brookes JD  Newcombe G 《Water research》2007,41(18):4262-4270
Microcystins are cyanobacterial toxins that are problematic for water authorities due to their resistance to conventional water treatment. Granular activated carbon (GAC) filtration has been shown to be effective in removing microcystin from water using both adsorption and biodegradation removal mechanisms; however, little is known regarding which removal mechanism predominates and to what extent. In this study, microcystin removal due to adsorption and biodegradation in GAC filtration were discriminated and assessed by commissioning three parallel laboratory columns, including a sterile GAC column, a conventional GAC column and a sand column. The results demonstrate that biodegradation is an efficient removal mechanism once it commences and that the rate of biodegradation was dependent upon temperature and initial bacterial concentration. Adsorption of microcystins was prevalent during the initial stages of the GAC columns and was modelled using the homogeneous surface diffusion model (HSDM). The HSDM provided evidence that an active biofilm present on the surface of the conventional GAC hindered adsorption of microcystin compared with the sterile GAC with no active biofilm. Up to 70% removal of microcystin-LR was still observed after 6 months of operation of the sterile GAC column, indicating that adsorption still played a vital role in the removal of this toxin.  相似文献   

5.
The use of activated carbon beds for the removal of natural humic and fulvic substances found in water supplies, has recently received considerable attention in water treatment operation (Lee et al., 1980; Le Cloirec et al., 1983). Moreover, the use of carbon adsorption for the reduction of haloform precursors (Anderson et al., 1981) and trihalomethanes produced by chlorination process, has contributed to a comprehensive investigation of adsorption characteristics of natural organic compounds (McCreary and Snoeyink, 1981). Many recent works showed the influence of adsorption system characteristics, such as pH, salt type, salt concentration and ionic heterogeneity in multicomponent adsorption systems, on the removal efficiency of humic and fulvic substances by activated carbon (McCreary and Snoeyink, 1980; Randtke and Jepsen, 1982; Weber et al., 1983). The purpose of this study is to examine the effect of a main component of domestic detergents, sodium triphosphate (STP), on the adsorptive capacities of powdered activated carbon (PAC) for commercially supplied humic acids, at different pH values in distilled water. Also, the effect of STP concentration and pH on the adsorption affinity of the PAC for humic acids, is discussed in relation with electrokinetic properties of carbon particles (zeta potential measurements).A first batch equilibrium study (Figs 1 and 2), showed an effective enhancement of adsorption capacity for humic acids as a function of STP concentration, in a non buffered media (pH of distilled water, close to 5.0). For example, visible absorption analysis of humic acids indicates an increase of 93% (500 mg l?1 PAC) and 133% (1000 mg l?1 PAC) in the carbon adsorption efficiency for a STP concentration from 0.2 to 1.0mM. A second batch equilibrium study (Figs 3 and 4) led to adsorption isotherms for humic acids in distilled water, as a function of STP concentration and initial pH value of the non buffered multicomponent system. Freundlich isotherms showed an increase in the adsorption capacity of the PAC for humic acids, with a decrease in pH and an increase in STP concentration. However, the adsorption capacity for humic acids is quite reduced at high pH values in presence of STP, in comparison with results obtained with distilled water.Electrokinetic measurements on PAC suspensions (Fig. 5) indicates that both humic acids and STP induce a negative variation of the zeta potential of carbon particles. In such a binary system, the zeta potential is a linear function of the pH; the negative surface charge of the carbon increasing with an elevation of pH (Fig. 6). Therefore, it appears that some adsorption of triphosphate polyanion from solution could occur, contributing then to the apparent negative surface charge of PAC particles.It has been previously showed that the type of anion in sodium salts, had little effect on the enhancement of adsorptive capacities of activated carbon for humic substances (Lafrance and Mazet, 1985), due to Na+ ions. However, adsorption of TP anions on the carbon surface may produce a source of repulsive charges, unfavourable to the co-adsorption of humic acids as the pH of the binary system reach more basic conditions. The influence of possible electrostatic interactions between adsorbates at the carbon surface, on the adsorption efficiency for humic acids, could then be studied by zeta potential measurements of PAC particles during the adsorption process.  相似文献   

6.
Boon N  Pycke BF  Marzorati M  Hammes F 《Water research》2011,45(19):6355-6361
The quality of drinking water is ensured by hygienic barriers and filtration steps, such as ozonation and granular activated carbon (GAC) filtration. Apart from adsorption, GAC filtration involves microbial processes that remove biodegradable organic carbon from the ozonated ground or surface water and ensures biological stability of the treated water. In this study, microbial community dynamics in were monitored during the start-up and maturation of an undisturbed pilot-scale GAC filter at 4 depths (10, 45, 80 and 115 cm) over a period of 6 months. New ecological tools, based on 16S rRNA gene-DGGE, were correlated to filter performance and microbial activity and showed that the microbial gradients developing in the filter was of importance. At 10 cm from the top, receiving the freshly ozonated water with the highest concentration of nutrients, the microbial community dynamics were minimal and the species richness remained low. However, the GAC samples at 80-115 cm showed a 2-3 times higher species richness than the 10-45 cm samples. The highest biomass densities were observed at 45-80 cm, which corresponded with maximum removal of dissolved and assimilable organic carbon. Furthermore, the start-up period was clearly distinguishable using the Lorenz analysis, as after 80 days, the microbial community shifted to an apparent steady-state condition with increased evenness. This study showed that GAC biofilter performance is not necessarily correlated to biomass concentration, but rather that an elevated functionality can be the result of increased microbial community richness, evenness and dynamics.  相似文献   

7.
The removal efficiency of several pharmaceutically active compounds from two different surface water types was investigated. Two different nanofiltration (NF) membranes (Trisep TS-80 and Desal HL) were first studied at low feed water recoveries (10%). In a second phase, the combination of an NF unit at higher feed water recovery (80%) with subsequent granular activated carbon (GAC) filtration of the permeate was investigated. Results indicate that removal of the selected pharmaceuticals with NF is mainly influenced by charge effects: negatively charged solutes are better removed, compared with uncharged solutes, which are, in turn, better removed compared with positively charged solutes. This latter trend is mainly due to charge attractions between the negatively charged membrane surface and positively charged solutes. Increasing feed concentrations of positively charged pharmaceuticals lead to increasing rejection values, due to membrane charge-shielding effects. The removal efficiency of pharmaceuticals with the combination NF/GAC is extremely high. This is mainly due to an increased adsorption capacity of the activated carbon since the largest part of the natural organic matter (NOM) is removed in the NF step. This NOM normally competes with pharmaceuticals for adsorption sites on the carbon.  相似文献   

8.
在不同的预臭氧浓度条件下处理微污染原水,考察了颗粒活性灰(GAC)吸附对处理后水样水质的影响.选择化学需氧量(CODMn)、溶解性有机碳(DOC)、生物可降解溶解性有机碳(BDOC)、UV254和氨氮(NH;-N)含量及有机物分子量分布作为考察吸附效果的检测指标.结果表明,在静态吸附时间达到5天时,颗粒活性炭吸附曲线开始趋于平缓,吸附时间超过5天之后吸附趋于饱和;预臭氧含量为2.5 mg/L时,颗粒活性炭对有机物的吸附效果最佳,对CODMn、DOC、BDOC的去除率分别为53.2%,63.2%和36.2%;在不同预臭氧处理条件下,颗粒活性炭对NH;-N的吸附效果并未表现出较大的差异,吸附去除率约为5%;颗粒活性炭优先吸附水中分子量> 10kDa的有机物,其次为分子量<1 kDa的有机物.  相似文献   

9.
A method for determining the concentration of active microbial biomass in granular activated carbon (GAC) filters used in water treatment was developed to facilitate studies on the interactions between adsorption processes and biological activity in such filters. High-energy sonication at a power input of 40 W was applied to GAC samples for the detachment of biomass which was measured as adenosine triphosphate (ATP). Modelling of biomass removal indicated that a series of six to eight sonication treatments of 2 min each yielded more than 90% of the attached active biomass. The ATP concentrations in 30 different GAC filters at nine treatment plants in The Netherlands ranged from 25 to 5000 ng ATP cm(-3) GAC, with the highest concentrations at long filter run times and pretreatment with ozone. A similar concentration range was observed in nine rapid sand (RS) filters. ATP concentrations correlated significantly (p<0.05) with total direct bacterial cell counts in each of these filter types, but the median value of the ATP content per cell in GAC filters (2.1 x 10(-8) ng ATP/cell) was much lower than in the RS filters (3.6 x 10(-7) ng ATP/cell). Average biofilm concentrations ranging from 500 to 10(5) pg ATP cm(-2) were calculated assuming spherical shapes for the GAC particles but values were about 20 times lower when the surface of pores >1 microm diameter is included in these calculations. The quantitative biomass analysis with ATP enables direct comparisons with biofilm concentrations reported for spiral wound membranes used in water treatment, for distribution system pipes and other aquatic environments.  相似文献   

10.
The paper describes the influence of the oxidation of natural organic matter (NOM) molecules with chlorine dioxide (ClO2) on granulated activated carbon (GAC) adsorption. In order to determinate the influence of ClO2 dosage on the NOM adsorption on GAC two parallel pilot scale experiments were performed. The raw water was treated respectively with 0.2 and 0.4 mg ClO2 L(-1) followed by the adsorption on GAC filters. Experiments were total organic carbon (TOC) measurements and size exclusion chromatography (SEC) controlled. The molecular weight distribution of NOM in the filtration bed outlet demonstrates that the low molecular weight molecules are less retained than the higher molecular weight components of NOM. It is shown that low molecular weight NOM causes less ClO2 demand. The oxidation of NOM molecules and very high capacity of GAC filter bed for NOM components can be used to control high ClO2 demand.  相似文献   

11.
A granular activated carbon (GAC) adsorption simulation methodology using the observed trace organic contaminant mid-point breakthrough and the pore diffusion model is presented, validated, and used to model adsorption and concentration gradient driven desorption. Trace organic contaminant adsorption was well-simulated by this approach; however, desorption from GAC adsorbers was found to occur at lower concentrations than predicted by either pore or surface diffusion model calculations. The observed concentration profiles during desorption yielded a lower peak concentration and more elongated attenuation of contaminants after intermittent loading conditions than predicted by the models. Hindered back diffusion caused by irreversibly adsorbed dissolved organic matter on the GAC surface is hypothesized to be responsible for slowing the desorption kinetics. In addition, laboratory test results indicate a negligible impact of simulated backwashing the GAC media on trace organic contaminant breakthrough.  相似文献   

12.
Dynamic pesticide removal with activated carbon fibers   总被引:1,自引:0,他引:1  
Rapid small-scale minicolumn tests were carried out to simulate the atrazine adsorption in water phase with three pelletized pitch-based activated carbon fibers (ACF) and one commercial granular activated carbon (GAC). Initial atrazine solutions were prepared with pretreated ground water. Minicolumn tests showed that the performance of highly activated carbon fibers (surface area of 1700 m2/g) is around 7 times better than the commercial GAC (with surface area at around 1100 m2/g), whereas carbon fibers with medium activation degree (surface area of 1500 m2/g) had a removal efficiency worse than the commercial carbon. The high removal efficiency of the highly activated ACF is due to the wide-opened microstructure of the material, with an appreciable contribution of the low size mesopores, maintaining at these conditions a fast kinetic adsorption rate rather than a selective adsorbent for micropollutants vs. natural organic matter.  相似文献   

13.
《Water research》1996,30(5):1065-1068
This work describes the possibility of application of a biosorption system with granulated activated carbon (GAC) for the tertiary treatment of oil-field brine. In addition to the dissolved and dispersed oil, the oil-field brine contained about 29 g/l of mineral matter, mainly NaCl. The investigation was carried out on two columns, each containing 300 g of GAC. To form the biofilm on GAC use was made of the microorganisms from the setup for the purification of refinery wastewaters by activated sludge procedure. The wastewater flow-rate through the columns was 40, 70, 95 and 130 l/d. It was found that the activated carbon in the columns was capable of removing 2.6 times more organic matter than was its adsorption capacity, and its adsorption power was not thus exhausted. The results indicate that the microorganisms present in the biofilm on activated carbon oxidize the adsorbed pollutants and thus regenerate the carbon surface. The procedure employed was very efficient—the organic matter content in the effluent did not exceed 2.5 mg/l (BOD5).  相似文献   

14.
Dissolved organic matter in treated surface waters (clarified, possibly ozonized, then GAC-filtered, Fig. 1), is fractionated by ultrafiltration into five molecular classes with MW < 300, 300–1000, 1000–5000, 5000–10000 or > 10,000. Dissolved organic carbon (DOC), oxidizability by KMnO4 in hot alkaline medium and u.v. absorbances at 240, 254, 280, 300 nm are measured. Fourteen series of samples, distributed on an annual biological cycle are analysed (Figs 2 and 3); multivariate statistical analyses are performed.By PCA (principal component analysis), variations in water supplying the activated carbon units appear to depend for 47% on ozonation and temperature; but river flow rate and quantity of flocculant added are no longer responsible for such variations (Fig. 4). Three groups of water appear (Fig. 5), according to the applied ozone level (zero, medium, high); among the medium ozonized waters, the cold ones differ from temperate ones.Ozonation diminishes molecular size of compounds (Table 1): three major classes with MW < 5000 are present in non- or medium-ozonized waters, but only two, with MW < 1000, remain in highly ozonized waters. This treatment destroys MW > 10,000 and even 1000–5000 ones and yields MW < 300 products; it also minimizes u.v. absorbances and oxidizability. Seasonal variations occur in DOC content of medium ozonized waters, with maxima values in winter or spring and minima in summer or autumn (Fig. 6): occurrence of MW < 300 compounds follows that of DOC, but the presence of 5000–10000 ones is minimal in winter.Quality of GAC-filtered waters varies by 19% with temperature (Fig. 7); ozonation effects are minimized: only previously highly ozonized waters distinguished themselves from the others (Fig. 8). Waters, non or medium ozonized before GAC-filtration, are divided into cold, temperate and warm waters. One, two or three major classes of compounds with MW < 5000, remain in GAC-filtered waters, according to the ozone level applied previously. This filtration reduces DOC by 17%, decreases u.v. absorbances and oxidizability and gives water with the same 0.30 mg O2 mg−1 C ratio (Table 2): MW 1000–5000 class is much less oxidizable after ozonation-GAC filtration but, on the other hand, MW < 300 class appears rather less oxidizable without ozonation before biological filtration. DOC content in effluent follows that in influent (Fig. 9), but variations are less marked. Total efficiency of the filtration increases with temperature, but behaviour of compounds differs from one class to another: MW 300–1000 and 5000–10000 classes are the most affected; MW 1000–5000 is not really modified. Elimination of MW < 300 or 5000–10000 compounds depends on temperature and may be due to biological phenomena, a but that of 1000–5000 and > 10,000 classes, independent of this parameter, may be related to adsorption mechanisms.  相似文献   

15.
活性炭过滤组合工艺处理高藻水   总被引:2,自引:0,他引:2  
为考察给水深度处理中活性炭单元在发挥吸附和生物作用的同时是否也能发挥过滤作用,以高藻源水为处理对象,对溶气气浮 活性炭过滤(工艺1)和溶气气浮 砂滤 活性炭过滤(工艺2)的处理效果和过滤单元的产水能力进行了比较。结果显示,两工艺的处理效果都比较好,而且差异不显著;工艺1中活性炭过滤单元的产水能力显著优于工艺2的砂滤单元。因此可初步断定,工艺1可以取代工艺2,即砂滤单元可以省掉。  相似文献   

16.
This paper presents the results of an extensive analytical investigation on the mechanisms involved in filtration of biological sludges by studying the changes in the “bound water” content of activated and mixed digested sludges when they were subjected to several physical, and chemical processes. A new method for determining bound water in sludges, based on differential thermal analysis (DTA), was developed which proved reliable and fast. Water in sludges exist in two states, as “free” or bulk water and as “bound” water which is held by the solid state either by sorption on specific sites, i.e. functional groups of the proteins and other macromolecules and/or restricted within pores and capillaries. Water binding by sludge displayed similar behaviour to the absorption of ions.All chemical coagulants (FeCl3, AlCl3, FeSO4) and cationic polyelectrolytes resulted in a reduction of the specific resistance and the bound water content of the sludge which was due to the replacement of water molecules by the adsorbed coagulant. Heat treatment of activated and digested sludge at 130°C resulted in a reduction of bound water by 30% whereas freezing and thawing reduced bound water by 70%.  相似文献   

17.
The occurrence of nineteen pharmaceutically active compounds and personal care products was followed monthly for 12 months after various stages of treatment in an advanced wastewater reclamation plant in Gwinnett County, GA, U.S.A. Twenty-four hour composite samples were collected after primary clarification, activated sludge biological treatment, membrane filtration, granular media filtration, granular activated carbon (GAC) adsorption, and ozonation in the wastewater reclamation plant. Compounds were identified and quantified using high performance liquid chromatography/tandem mass spectrometry (LC-MS/MS) and gas chromatography/mass spectrometry (GC-MS) after solid-phase extraction. Standard addition methods were employed to compensate for matrix effects. Sixteen of the targeted compounds were detected in the primary effluent; sulfadimethoxine, doxycycline, and iopromide were not found. Caffeine and acetaminophen were found at the highest concentrations (∼105 ng/L), followed by ibuprofen (∼104 ng/L), sulfamethoxazole and DEET (∼103 ng/L). Most of the other compounds were found at concentrations on the order of hundreds of ng/L. After activated sludge treatment and membrane filtration, the concentrations of caffeine, acetaminophen, ibuprofen, DEET, tetracycline, and 17α-ethynylestradiol (EE2) had decreased by more than 90%. Erythromycin and carbamazepine, which were resistant to biological treatment, were eliminated by 74 and 88%, on average, by GAC. Primidone, DEET, and caffeine were not amenable to adsorption by GAC. Ozonation oxidized most of the remaining compounds by >60%, except for primidone and DEET. Of the initial 16 compounds identified in the primary effluent, only sulfamethoxazole, primidone, caffeine and DEET were frequently detected in the final effluent, but at concentrations on the order of 10-100 ng/L. Removal of the different agents by the various treatment processes was related to the physical-chemical properties of the compounds.  相似文献   

18.
The kinetics of naphthalene-2-sulfonic acid (2-NSA) adsorption by granular activated carbon (GAC) were measured and the relationships between adsorption, desorption, bioavailability and biodegradation assessed. The conventional Langmuir model fitted the experimental sorption isotherm data and introduced 2-NSA degrading bacteria, established on the surface of the GAC, did not interfere with adsorption. The potential value of GAC as a microbial support in the aerobic degradation of 2-NSA by Arthrobacter globiformis and Comamonas testosteroni was investigated. Using both virgin and microbially colonised GAC, adsorption removed 2-NSA from the liquid phase up to its saturation capacity of 140 mg/g GAC within 48 h. However, between 83.2% and 93.3% of the adsorbed 2-NSA was bioavailable to both bacterial species as a source of carbon for growth. In comparison to the non-inoculated GAC, the combination of rapid adsorption and biodegradation increased the amount (by 70-93%) of 2-NSA removal from the influent phase as well as the bed-life of the GAC (from 40 to >120 d). A microbially conditioned GAC fixed-bed reactor containing 15 g GAC removed 100% 2-NSA (100 mg/l) from tannery wastewater at an empty bed contact time of 22 min for a minimum of 120 d without the need for GAC reconditioning or replacement. This suggests that small volume GAC bioreactors could be used for tannery wastewater recycling.  相似文献   

19.
This study assessed the impact of MIEX pre-treatment, followed by either coagulation or microfiltration (MF), on the effectiveness of pilot granular activated carbon (GAC) filters for the removal of the taste and odour compounds, 2-methylisoborneol (MIB) and geosmin, from a surface drinking water source over a 2-year period. Complete removal of MIB and geosmin was achieved by all GAC filters for the first 10 months, suggesting that the available adsorption capacity was sufficient to compensate for differences in dissolved organic carbon (DOC) entering the GAC filters.Reduction of empty bed contact time (EBCT), in all but one GAC filter, resulted in breakthrough of spiked MIB and geosmin, with initial results inconclusive regarding the impact of MIEX pre-treatment. MIB and geosmin removal increased over the ensuing 12 months until complete removal of both MIB and geosmin was again achieved in all but one GAC filter, which had been pre-chlorinated. Autoclaving and washing the GAC filters had minimal impact on geosmin removal but reduced MIB removal by 30% in all but the pre-chlorinated filter, confirming that biodegradation impacted MIB removal. The impact of biodegradation was greater than any impact on GAC adsorption arising from DOC differences due to MIEX pre-treatment. It is not clear whether, at a lower initial EBCT, MIEX pre-treatment may have impacted on the adsorption capacity of the virgin GAC.The GAC filter maintained at the longer EBCT, which was also pre-chlorinated, completely removed MIB and geosmin for the period of the study, suggesting that the greater adsorption capacity was compensating for any decrease in biological degradation.  相似文献   

20.
This study evaluated granular activated carbons (GACs) using rapid small-scale column tests (RSSCTs) on methyl tert-butyl ether (MTBE) levels from 20 to 2000 microg/L, with or without the presence of tert-butyl alcohol, benzene, toluene, p-xylene (BTX) in two groundwater (South Lake Tahoe Utility District [Lake Tahoe, CA] and Arcadia Well Field [Santa Monica, CA]) and a surface water source (Lake Perris, CA). Direct comparison between two GACs was made for RSSCTs conducted with surface water from Lake Perris. The impact of natural organic matter on GAC performance was investigated and found to correspond with total organic carbon concentration in the three source waters. Significant reduction in GAC performance for MTBE due to competitive adsorption from soluble fuel components (e.g., BTX) was observed. Little or no difference in GAC usage rate or bed life was detected as the empty-bed contact time is changed from 10 to 20 min for RSSCTs conducted in the two groundwater sources, whereas the RSSCTs conducted in the surface water source exhibited significant increase in GAC usage rate as the empty-bed contact time is decreased from 20 to 10 min. This finding suggests that the higher NOM content of the surface water over the groundwater sources caused a greater competitive-adsorption effect that made more sites on the GAC to be unavailable to MTBE, thus decreasing its rate of adsorption and GAC performance for MTBE. Finally, the impact of differential influent MTBE concentration on GAC performance was demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号