首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principal goal of this research is developing physics-based, reduced-order, analytical models of nonlinear fluid-structure interactions associated with offshore structures. Our primary focus is to generalize the Hamilton's variational framework so that systems of flow-oscillator equations can be derived from first principles. This is an extension of earlier work that led to a single energy equation describing the fluid-structure interaction. It is demonstrated here that flow-oscillator models are a subclass of the general, physical-based framework. A flow-oscillator model is a reduced-order mechanical model, generally comprising two mechanical oscillators, one modelling the structural oscillation and the other a nonlinear oscillator representing the fluid behaviour coupled to the structural motion.Reduced-order analytical model development continues to be carried out using a Hamilton's principle-based variational approach. This provides flexibility in the long run for generalizing the modelling paradigm to complex, three-dimensional problems with multiple degrees of freedom, although such extension is very difficult. As both experimental and analytical capabilities advance, the critical research path to developing and implementing fluid-structure interaction models entails-formulating generalized equations of motion, as a superset of the flow-oscillator models; and-developing experimentally derived, semi-analytical functions to describe key terms in the governing equations of motion.The developed variational approach yields a system of governing equations. This will allow modelling of multiple d.f. systems. The extensions derived generalize the Hamilton's variational formulation for such problems. The Navier-Stokes equations are derived and coupled to the structural oscillator. This general model has been shown to be a superset of the flow-oscillator model. Based on different assumptions, one can derive a variety of flow-oscillator models.  相似文献   

2.
 In this article, a coupled finite element and boundary element approach for the acoustic radiation and scattering from submerged elastic bodies of arbitrary shape is presented. An alternative to the direct boundary element method for acoustics is proposed. By taking an auxiliary source surface inside the radiating boundary and following the usual discretization and integration procedures employed in the boundary element method, both the singularities of the integrands and the nonuniqueness problems do not arise. In addition, the difficulty of slope discontinuity also can be overcome. This procedure is formulated in a similar fashion of wave superposition method, except that the direct boundary integral equations are adopted. The proposed formulation employ the surface Helmholtz integral equation and its normal gradient like that adopted in the Burton–Miller approach, but do not employ any coupling constant. Typical examples are presented that demonstrate the efficiency of the proposed technique. Received 9 April 2000  相似文献   

3.
4.
弹性薄壁壳体高速风洞耦合振动实验及数值模拟   总被引:1,自引:0,他引:1  
针对弹性薄壁壳体在高速气流作用下的耦合振动特性进行了研究。采用迭代耦合法对风洞实验中薄壁模型的耦合振动响应进行了数值计算,计算中采用浸入边界法处理流场域网格与结构域网格的运动关系,给出了模型仪器舱段测点上的应变功率谱密度分布以及振动能量在仪器舱段及其相邻位置上的分布情况。研究表明:在与高速气流的相互作用下,模型的振动能量主要集中在高频内某一频率点附近,模型的振动并非一般的低阶模态响应;虽然模型的仪器舱段具有一定的迎风角度,但该段的振动并非最为强烈。通过风洞实验对数值模拟结果进行了验证,结果表明:通过该数值计算程序可以对高速气流作用下的结构动态特性进行定性分析,但还需要通过进一步的风洞实验数据对数值模拟结果进行修正。  相似文献   

5.
An approximation method is presented for the analysis for the interaction of a structure with a compressible linear fluid. The method uses the fact that the eigenvalues of the dry structure are higher than the corresponding eigenvalues of a structure in contact with an incompressible fluid, and the corresponding eigenvalues of a structure in contact with a compressible fluid are even lower. The proof of this theorem is given. It is shown that in both the compressible and incompressible cases the number of degress-of-freedom can be reduced to the number of boundary points which results in a substantial saving of core memory space and computing time. A sample problem is given to demonstrate the good results of the approximation methods for a low quotient of the eigenfrequencies divided by the square of the speed of sound.  相似文献   

6.
A new comprehensive acoustic 2-D interface element capable of coupling the boundary element (BE) and finite element (FE) discretizations has been formulated for fluid–structure interaction problems. The Helmholtz equation governing the acoustic pressure in a fluid is discretized using the BE method and coupled to the FE discretization of a vibrating structure that is in contact with the fluid. Since the BE method naturally maps the infinite fluid domain into finite node points on the fluid–structure interface, the formulation is especially useful for problems where the fluid domain extends to infinity. Details of the BE matrix computation process adapted to FE code architecture are included for easy incorporation of the interface element in FE codes. The interface element has been used to solve a few simple fluid–structure problems to demonstrate the validity of the formulation. Also, the vibration response of a submerged cylindrical shell has been computed and compared with the results from an entirely finite element formulation.  相似文献   

7.
We present a combined finite-element/boundary-element method to simulate inflation processes, characterized by a light, folded structure enveloping a viscous fluid. The application of the boundary-element method to approximate the flow allows for automatic evolution of the problem domain according to the kinematic condition. Moreover, it provides an intrinsic mechanism to treat the ubiquitous self-contact, common to inflation problems. We numerically verify that self-contact is indeed prevented and demonstrate the versatility and robustness of this method.  相似文献   

8.
水力瞬变也称为水锤,是由于管道内压力瞬间升高,压力波在管道内以声速传递的现象。紧随着压力波,管壁上产生动态应力,进而导致管道失效。基于ALE流固耦合方法模拟由于阀门突然关闭导致的管道中流体冲击波,并与一维水锤冲击波理论值进行了对比。在此基础上分析了不同约束条件下,距离管道末端一定距离,由于管壁变形和振动而产生的三维动态应力。发现在水锤波传播过该位置一段时间之后,管壁应力才达到最大值,此外管壁周向应力在动态应力中影响是最主要的。  相似文献   

9.
假设流体无粘且无旋,计及流体中的气穴现象,采用谱单元方法建立水下爆炸瞬态流固耦合的三维数值模型,探讨了水下爆炸瞬态流固耦合作用的机理,用经典的平板冲击问题对数值模型进行验证,数值结果与解析解吻合良好,并根据数值结果绘制了流体中的气穴区域,对气穴效应进行分析,分析显示,气穴效应会对结构响应产生很大影响,在计算中应予以考虑。基于本文建立的数值模型,在不同网格细化的条件下,分别采用谱单元方法和有限元方法对弹簧——平板模型进行水下爆炸瞬态流固耦合问题的求解,并在此基础上对谱单元方法和有限元方法进行对比研究,研究发现,谱单元方法在提高精度的同时能大量节省计算时间,可较好地应用于水下爆炸流固耦合问题的求解中。本文旨在为相关水下爆炸瞬态流固耦合的研究提供参考。  相似文献   

10.
考虑流固耦合的典型管段结构振动特性分析   总被引:2,自引:0,他引:2       下载免费PDF全文
研究了两种最常见的流体管段结构模型与计算。对于直管,利用拉氏变换把时域方程变换到频域,对频域方程进行推导求解,得到了直管的频域解析解;对于弯管,直接对方程模型进行整体求解,同样求得了其频域解析解。然后以Davidson单弯管模型为例,说明典型管段结构组合的管道系统的求解方法,并验证直管以及弯管模型和求解方法的正确性。最后,通过改变弯管的弯曲半径以及角度来对管道的流固耦合振动特性的影响因素进行分析。结果表明,弯曲角度以及弯曲半径越小,频谱曲线密集程度越低,耦合振动越弱,反之越强。  相似文献   

11.
In this paper a combined arbitrary Lagrange-Euler fictitious domain (ALE-FD) method for fluid-structure interaction problems in cardiovascular biomechanics is derived in terms of a weighted residual finite-element formulation. For both fluid flow of blood and solid mechanics of vascular tissue, the performance of tetrahedral and hexahedral Crouzeix-Raviart elements are evaluated. Comparable convergence results are found, although for the test cases considered the hexahedral elements are more accurate. The possibilities that are offered by the ALE-FD method are illustrated by means of a simulation of valve dynamics in a simplified left ventricular flow model.  相似文献   

12.
以巴基斯坦真纳电站进水口拦污栅结构为对象,研究大型拦污栅结构流激振动及其影响因素。建立了拦污栅结构数值分析模型,以液固单元接触分析处理了液固耦合作用,分析了栅条作用、液固耦合、支撑约束及结构边界条件等因素对大型拦污栅结构动力特性的影响,给出了大型拦污栅避免栅体涡栅共振及栅条流激共振评判条件。结果表明:栅条作用与液固耦合对大型拦污栅结构动力特性的影响不容忽视,结构加固可能降低其动力安全性,而支撑约束及结构边界条件对拦污栅结构振动影响很小。该成果为该型拦污栅流激共振评判提供新依据,为相关技术标准修订提供参考。  相似文献   

13.
In this work, we consider the solution of fluid-structure interaction (FSI) problems using a monolithic approach for the coupling between fluid and solid subproblems. The coupling of both equations is realized by means of the arbitrary Lagrangian-Eulerian framework and a nonlinear harmonic mesh motion model. Monolithic approaches require the solution of large ill-conditioned linear systems of algebraic equations at every Newton step. Direct solvers tend to use too much memory even for a relatively small number of degrees of freedom and, in addition, exhibit superlinear growth in arithmetic complexity. Thus, iterative solvers are the only viable option. To ensure convergence of iterative methods within a reasonable amount of iterations, good and, at the same time, cheap preconditioners have to be developed. We study physics-based block preconditioners, which are derived from the block-LDU factorization of the FSI Jacobian, and their performance on distributed memory parallel computers in terms of two- and three-dimensional test cases permitting large deformations.  相似文献   

14.
Parallel BDD-based monolithic algorithms for acoustic fluid-structure interaction problems are developed. In a previous study, two schemes, NN-I + CGC-FULL and NN-I + CGC-DIAG, have been proven to be efficient among several BDD-type schemes for one processor. Thus, the parallelization of these schemes is discussed in the present study. These BDD-type schemes consist of the operations of the Schur complement matrix-vector (Sv) product, Neumann-Neumann (NN) preconditioning, and the coarse problem. In the present study, the Sv product and NN preconditioning are parallelized for both schemes, and the parallel implementation of the solid and fluid parts of the coarse problem is considered for NN-I + CGC-DIAG. The results of numerical experiments indicate that both schemes exhibit performances that are almost as good as those of single solid and fluid analyses in the Sv product and NN preconditioning. Moreover, NN-I + CGC-DIAG appears to become more efficient as the problem size becomes large due to the parallel calculation of the coarse problem.  相似文献   

15.
横风下高速列车流固耦合动力学联合仿真   总被引:1,自引:0,他引:1  
基于车辆-轨道耦合动力学和空气动力学建立了高速列车流固耦合动力学行为的联合仿真计算方法。通过将车辆-轨道耦合动力学计算程序嵌入流体力学程序中,避免了流体和固体两个求解器之间的数据交换通讯,并且采用耦合迭代步内流固边界条件气动力线性插值的办法,实现了流体和固体两个求解器时间迭代步长的独立选取,提高了计算速度。利用建立的流固耦合计算方法,研究了6级横风环境下列车以350km/h速度运行时的流固耦合动力学行为。比较了离线仿真和联合仿真两种方法下列车气动力与姿态、安全性和舒适性指标的差异。研究表明:列车-气流的流固耦合效应对头车气动力和姿态的影响显著,头车安全性指标有所恶化。  相似文献   

16.
考虑流固耦合的弹性圆柱体涡激振动研究   总被引:1,自引:0,他引:1  
利用CFX软件对质量比为7和3.24时圆柱体两向自由度涡激振动进行数值模拟,捕捉到了"锁定区"、"拍"和"相位开关"等现象,探讨了质量比对涡激振动的影响。最终通过研究表明:流固耦合在圆柱体涡激振动分析中应予以考虑;质量比为3.24时的锁定区范围、最大横向振幅以及达到锁定时的流速要比质量比为7时的大;质量比为7时顺流向频率一直为横向频率的2倍,但当质量比为3.24时,顺流向频率在较低约化速度(Ur≤4)下为横向频率的2倍,在较高约化速度下有两个值,一个为横向频率的2倍,另一个与横向频率接近。  相似文献   

17.
The paper proposes a new analysis method for fluid-structure problems, which has nodal consistency at the fluid-structure interface and its calculation efficiency and accuracy are high. The incompressible viscous fluid analysis method using the P1-P1 element based on SUPG/PSPG developed by Tezduyar et al. is used for fluid analysis, while the high-accuracy analysis method based on EFMM developed by the authors is adopted for structure analysis. As the common feature of these methods, it is possible to analyze a fluid or a structure rather accurately by using the first-order triangular or tetrahedral elements. In addition, variables are exchanged exactly at the common nodes on the fluid-structure boundary without deteriorating accuracy and calculation efficiency due to the interpolation of variables between nodes. The present method is applied to a fluid-structure interaction problem by simulating the deformation of a red blood cell.  相似文献   

18.
A model for shock propagation in one-dimensional weakly compressible fluids is developed by assuming, for any instant, a step function for the fluid density. The resulting set of equations is reduced to a single first order ordinary differential equation for the density. Under simple assumptions this approach results in a novel non-linear interactive approximation for the fluid pressure on the structure's surface.  相似文献   

19.
调节阀-管道-流体系统流固耦合动态特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
针对调节阀-管道-流体系统的流固耦合问题,建立了考虑阀门定位器作用的系统动态仿真模型,给出了求解调节阀阀芯-阀杆系统响应的预估-校正算法和求解调节阀-管道-流体系统响应的流固耦合有限元方法,利用ANSYS软件对系统在固定开度与变开度情况和流开型与流闭型情况下振动响应进行了定性分析。研究表明:在给定压差下,管道以及流体流向对调节阀阀芯-阀杆系统的位移响应以及阀芯受到的流体不平衡力响应都有较大影响。  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号