首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thermoelectric half-Heusler compound Ti0.5(Hf0.5Zr0.5)0.5NiSn0.998Sb0.002 was fabricated by spin-casting and subsequent annealing. ZT at room temperature increased with annealing time through an increase in absolute Seebeck coefficients despite a decrease in electrical conductivity. ZT reached 0.10 after annealing at 1050 K for 48 h. In powder x-ray diffraction analysis, each half-Heusler peak was accompanied by a bump at the high-angle side, corresponding to a minor Ti-rich half-Heusler phase. The quantity and Ti composition of the minor phase increased with annealing time, although those of the major half-Heusler phase were almost constant. In transmission electron microscopic analysis, granular domains, several nanometers in size, with atomic ordering or disordering were observed. Thermoelectric properties were␣improved by annealing through the growth of heterogeneous microstructures of the Ti-rich and Ti-poor half-Heusler grains and of the granular domains.  相似文献   

2.
Nitrogen-doped Ge2Sb2Te5 (GST) films for nonvolatile memories were prepared by reactive sputtering with a GST alloy target. Doped nitrogen content was determined by using x-ray photoelectron spectroscopy (XPS). The crystallization behavior of the films was investigated by analyzing x-ray diffraction (XRD) and differential scanning calorimetry (DSC). Results show that nitrogen doping increases crystallization temperature, crystallization-activation energy, and phase transformation temperature from fcc to hexagonal (hex) structure. Doped nitrogen probably exists in the grain vacancies or grain boundaries and suppresses grain growth. The electrical properties of the films were studied by analyzing the optical band gap and the dependence of the resistivity on the annealing temperature. The optical band gap of the nitrogen-doped GST film is slightly larger than that of the pure GST film. Energy band theory is used to analyze the effect of doped nitrogen on electrical properties of GST films. Studies reveal that nitrogen doping increases resistivity and produces three relatively stable resistivity states in the plot of resistivity versus annealing temperature, which makes GST-based multilevel storage possible. Current-voltage (I-V) characteristics of the devices show that nitrogen doping increases the memory’s dynamic resistance, which reduces writing current from milliampere to microampere.  相似文献   

3.
For widespread application of thin-film photovoltaic solar cells, synthesis of inexpensive absorber material is essential. In this work, deposition of ternary Cu3BiS3 absorber material, which contains abundant and environmentally benign elements, was carried out on glass substrate. Flowerlike Cu3BiS3 thin films with nanoflakes as building block were formed on glass substrate by chemical bath deposition. These films were annealed at 573 K and 673 K in sulfur ambient for structural improvement. Their structure was characterized using Raman spectroscopy, as well as their surface morphological and optical properties. The x-ray diffraction profile of as-deposited Cu3BiS3 thin film revealed amorphous structure, which transformed to orthorhombic phase after annealing. The Raman spectrum exhibited a characteristic peak at 290 cm?1. Scanning electron microscopy of as-deposited Cu3BiS3 film confirmed formation of nanoflowers with diameter of around 1052 nm. Wettability testing of as-deposited Cu3BiS3 thin film demonstrated hydrophobic nature, which became hydrophilic after annealing. The measured ultraviolet–visible (UV–Vis) absorption spectra of the Cu3BiS3 thin films gave an absorption coefficient of 105 cm?1 and direct optical bandgap of about 1.42 eV after annealing treatment. Based on all these results, such Cu3BiS3 material may have potential applications in the photovoltaic field as an absorber layer.  相似文献   

4.
Calcium copper titanium oxide (CaCu3Ti4O12, abbreviated to CCTO) films were deposited on Pt/Ti/SiO2/Si substrates at room temperature (RT) by radiofrequency magnetron sputtering. As-deposited CCTO films were treated by rapid thermal annealing (RTA) at various temperatures and in various atmospheres. X-ray diffraction patterns and scanning electron microscope (SEM) images demonstrated that the crystalline structures and surface morphologies of CCTO thin films were sensitive to the annealing temperature and ambient atmosphere. Polycrystalline CCTO films could be obtained when the annealing temperature was 700°C in air, and the grain size increased signifi- cantly with annealing in O2. The 0.8-μm CCTO thin film that was deposited at RT for 2 h and then annealed at 700°C in O2 exhibited a high dielectric constant (ε′) of 410, a dielectric loss (tan δ) of 0.17 (at 10 kHz), and a leakage current density (J) of 1.28 × 10−5 A/cm2 (at 25 kV/cm).  相似文献   

5.
Te-doped Mg2Si (Mg2Si:Te m , m = 0, 0.01, 0.02, 0.03, 0.05) alloys were synthesized by a solid-state reaction and mechanical alloying. The electronic transport properties (Hall coefficient, carrier concentration, and mobility) and thermoelectric properties (Seebeck coefficient, electrical conductivity, thermal conductivity, and figure of merit) were examined. Mg2Si was synthesized successfully by a solid-state reaction at 673 K for 6 h, and Te-doped Mg2Si powders were obtained by mechanical alloying for 24 h. The alloys were fully consolidated by hot-pressing at 1073 K for 1 h. All the Mg2Si:Te m samples showed n-type conduction, indicating that the electrical conduction is due mainly to electrons. The electrical conductivity increased and the absolute value of the Seebeck coefficient decreased with increasing Te content, because Te doping increased the electron concentration considerably from 1016 cm−3 to 1018 cm−3. The thermal conductivity did not change significantly on Te doping, due to the much larger contribution of lattice thermal conductivity over the electronic thermal conductivity. Thermal conduction in Te-doped Mg2Si was due primarily to lattice vibrations (phonons). The thermoelectric figure of merit of intrinsic Mg2Si was improved by Te doping.  相似文献   

6.
Single phase β-Zn4Sb3 was prepared by the application of a two-stage heat treatment, and impurity elements were doped. The undoped and doped samples were prepared by direct melting followed by two-stage heat treatment at 450°C and 400°C after solidification of the samples in sealed quartz ampoules. Impurity doping of the samples was performed by the addition of 1 at.% of Se, In, Pb, Te, or Bi. The resulting samples were characterized by x-ray diffraction (XRD), differential thermal analysis (DTA), optical microscopy, and electron probe microanalysis, and their Seebeck coefficients were determined at room temperature. The undoped samples were determined by XRD and DTA to comprise single phase β-Zn4Sb3, while the doped samples were composed of multiple phases. From the measurements of the Seebeck coefficient, all samples were found to be p-type and all were found to have almost the same values. These results indicate that β-Zn4Sb3 has limited solubility for these impurity elements.  相似文献   

7.
The thermal stability of a Ge2Sb2Te5 chalcogenide layer in contact with titanium and titanium nitride metallic thin films has been investigated mainly using x-ray diffraction and elastic nuclear backscattering techniques. Without breaking vacuum, Ti and TiN have been deposited on Ge2Sb2Te5 material using magnetron sputtering. Thermal treatments have been performed in a 10−7 mbar vacuum furnace. On annealing up to 450°C, the TiN metallic film does not interact with the chalcogenide film, but at the same time adhesion problems and instabilities in contact resistance arise. To improve the adhesion and eventually stabilize the contact resistance, an interfacial Ti layer has been considered. At 300°C, a TiTe2 compound is formed by interacting with Te segregated from the Ge2Sb2Te5 layer. At higher temperatures, the Ti layer decomposes the chalcogenide film, forming several compounds tentatively identified as GeTe, Ge3Ti5, Ge5Ti6, TiTe2,, and Sb2Te3. It has been found that the properties of the Ge2Sb2Te5 film can be retained by controlling the decomposition rate of the chalcogenide layer, which is achieved by providing a limited supply of Ti and/or by depositing a Te-rich Ge2Sb2Te5 film.  相似文献   

8.
Ag-Sb-Te-Ge-based alloys have received great attention in recent years. In the present work we prepared the pseudobinary alloy (Ag0.365Sb0.558Te)0.975 (GeTe)0.025 using spark plasma sintering and evaluated its thermoelectric (TE) properties over the temperature range from 318 K to 551 K. Rietveld analysis revealed that about 1.3 at.% Ge atoms occupy the Sb sites and that the alloy exhibits the same crystal structure as AgSbTe2. By using back-scattered electron imaging, we observed two instead of one phase in the sample. The small white AgSbTe2 chunks embedded in the matrix can substantially scatter phonons. Compared with the transport properties of Ag0.365Sb0.558Te, we obtained a slightly increased Seebeck coefficient and reduced thermal conductivity without sacrificing electrical conductivity. The highest TE figure of merit, ZT, was 0.69 at 551 K, whereas that of the ternary alloy Ag0.365Sb0.558Te was 0.61 at the corresponding temperature, suggesting that (Ag0.365Sb0.558Te)0.975(GeTe)0.025 has the potential to improve TE performance with optimization of its chemical composition.  相似文献   

9.
Schottky contact formation on p-GaN using W2B/Pt/Au and W2B5/Pt/Au metallization schemes was investigated using x-ray photoelectron spectroscopy (XPS), current-voltage (I-V), and Auger electron spectroscopy measurements. The Schottky barrier height (SBH) determined from XPS is 2.71 eV and 2.87 eV for as-deposited W2B- and W2B5-based contacts, respectively. By comparison, fitting of the I-V curves using the thermionic field emission model gives unphysical SBHs > 4 eV due to the presence of an interfacial layer acting as an additional barrier to carrier transport. Upon annealing to ∼600–700°C, the diodes show slight deterioration in rectifying behavior due to the onset of metallurgical reactions with the GaN. The experimental dependence of the reverse leakage current on bias and measurement temperature is inconsistent with both thermionic emission and thermionic field emission models, suggesting that leakage must originate from other mechanisms such as surface leakage or generation in the depletion layer through deep-level defects.  相似文献   

10.
The effects of atomic hydrogen (H) and Br/methanol etching on Hg1−x Cd x Te films were investigated using x-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Exposure of an as-received Hg1−x Cd x Te sample to H + H2 resulted in H-induced TeO2 reduction. The oxide reduction was first order with respect to H + H2 exposure. Exposure to H + H2 after etching the Hg1−x Cd x Te film in a Br/methanol solution induced Hg and C depletion. Hg and C removal was also observed after completely reducing the TeO2 on the as-received sample. The removal process was hindered by the formation of a Cd-rich overlayer on both etched and unetched surfaces.  相似文献   

11.
The clathrate I Ba8Ge433 [space group Ia[`3]d Ia\bar{3}d , no. 230, a = 21.307(1) ?] has been synthesized as a single phase and characterized by x-ray powder diffraction and metallographic analysis. Electrical and thermal transport measurements have been performed in the temperature range of 5 K to 673 K. Ba8Ge433 displays the electrical resistivity of a poor metal at low temperatures, with semiconducting-like behavior appearing above 300 K.  相似文献   

12.
As part of a series of wafer bonding experiments, the exfoliation/blistering of ion-implanted Cd0.96Zn0.04Te substrates was investigated as a function of postimplantation annealing conditions. (211) Cd0.96Zn0.04Te samples were implanted either with hydrogen (5×1016 cm−2; 40–200 keV) or co-implanted with boron (1×1015 cm−2; 147 keV) and hydrogen (1–5×1016 cm−2; 40 keV) at intended implant temperatures of 253 K or 77 K. Silicon reference samples were simultaneously co-implanted. The change in the implant profile after annealing at low temperatures (<300°C) was monitored using high-resolution x-ray diffraction, atomic force microscopy (AFM), and optical microscopy. The samples implanted at the higher temperature did not show any evidence of blistering after annealing, although there was evidence of sample heating above 253 K during the implant. The samples implanted at 77 K blistered at temperatures ranging from 150°C to 300°C, depending on the hydrogen implant dose and the presence of the boron co-implant. The production of blisters under different implant and annealing conditions is consistent with nucleation of subsurface defects at lower temperature, followed by blistering/exfoliation at higher temperature. The surface roughness remained comparable to that of the as-implanted sample after the lower temperature anneal sequence, so this defect nucleation step is consistent with a wafer bond annealing step prior to exfoliation. Higher temperature anneals lead to exfoliation of all samples implanted at 77 K, although the blistering temperature (150–300°C) was a strong function of the implant conditions. The exfoliated layer thickness was 330 nm, in good agreement with the projected range. The “optimum” conditions based on our experimental data showed that implanting CdZnTe with H+ at 77 K and a dose of 5×1016/cm2 is compatible with developing high interfacial energy at the bonded interface during a low-temperature (150°C) anneal followed by layer exfoliation at higher (300°C) temperature.  相似文献   

13.
Electrical conductivity, the Hall coefficient, and thermoelectric power were studied and differential thermal analysis was carried out in Ag2Te crystals near and within the range of phase transitions, in the directions of heating and cooling. A large hysteresis loop was observed. The results are discussed in terms of the theory of smeared phase transitions. Agreement between experimental data and theory is achieved in a second approximation of the inclusion function L2(T) and its derivative with respect to temperature, dL2/dT.  相似文献   

14.
A PbTiO3/Ba0.85Sr0.15TiO3/PbTiO3 (PT/BST15/PT) sandwich thin film has been prepared on Pt/Ti/SiO2/Si substrates by an improved sol-gel technique. It is found that such films under rapid thermal annealing at 700°C crystallize more favorably with the addition of a PbTiO3 layer. They possess a pure, perovskite-phase structure with a random orientation. The polarization-electric field (P-E) hysteresis loop and current-voltage (I-V) characteristic curves reveal that a PT/BST15/PT film exhibits good ferroelectricity at room temperature. However, no sharp peak, only a weak maximum, is observed in the curves of the dielectric constant versus temperature. The dielectric constant, loss tangent, leakage current density at 20 kV/cm, remnant polarization, and coercive field of the PT/BST15/PT film are 438, 0.025, 1.3 × 10−6 Acm−2, 2.46 μCcm−2, and 41 kVcm−1, respectively, at 25°C and 10 kHz. The PT/BST15/PT film is a candidate material for high sensitivity elements for uncooled, infrared, focal plane arrays (UFPAs) to be used at near ambient temperature.  相似文献   

15.
In this work, Bi2Te3-Sb2Te3 superlattices were prepared by the nanoalloying approach. Very thin layers of Bi, Sb, and Te were deposited on cold substrates, rebuilding the crystal structure of V2VI3 compounds. Nanoalloyed super- lattices consisting of alternating Bi2Te3 and Sb2Te3 layers were grown with a thickness of 9 nm for the individual layers. The as-grown layers were annealed under different conditions to optimize the thermoelectric parameters. The obtained layers were investigated in their as-grown and annealed states using x-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive x-ray (EDX) spectroscopy, transmission electron microscopy (TEM), and electrical measurements. A lower limit of the elemental layer thickness was found to have c-orientation. Pure nanoalloyed Sb2Te3 layers were p-type as expected; however, it was impossible to synthesize p-type Bi2Te3 layers. Hence the Bi2Te3-Sb2Te3 superlattices consisting of alternating n- and p-type layers showed poor thermoelectric properties.  相似文献   

16.
The band gap E g of the CdTe and Cd0.9Zn0.1Te crystals and its temperature dependence are determined by optical methods. This is motivated by considerable contradictoriness of the published data, which hampers the interpretation and calculation of characteristics of detectors of X-ray and γ radiation based on these materials (E g = 1.39–1.54 and 1.51–1.6 eV for CdTe and Cd0.9Zn0.1Te, respectively). The used procedure of determination of E g is analyzed from the viewpoint of the influence of the factors leading to inaccuracies in determination of its value. The measurements are performed for well-purified high-quality samples. The acquired data for CdTe (E g = 1.47–1.48 eV) and Cd0.9Zn0.1Te (E g = 1.52–1.53 eV) at room temperature substantially narrow the range of accurate determination of E g.  相似文献   

17.
Ca z Co4−x (Fe/Mn) x Sb12 skutterudites were prepared by mechanical alloying and hot pressing. The phases of mechanically alloyed powders were identified as γ-CoSb2 and Sb, but they were transformed to δ-CoSb3 by annealing at 873 K for 100 h. All specimens had a positive Hall coefficient and Seebeck coefficient, indicating p-type conduction by holes as majority carriers. For the binary CoSb3, the electrical conductivity behaved like a nondegenerate semiconductor, but Ca-filled and Fe/Mn-doped CoSb3 showed a temperature dependence of a degenerate semiconductor. While the Seebeck coefficient of intrinsic CoSb3 increased with temperature and reached a maximum at 623 K, the Seebeck coefficient increased with increasing temperature for the Ca-filled and Fe/Mn-doped specimens. Relatively low thermal conductivity was obtained because fine particles prepared by mechanical alloying lead to phonon scattering. The thermal conductivity was reduced by Ca filling and Fe/Mn doping. The electronic thermal conductivity was increased by Fe/Mn doping, but the lattice thermal conductivity was decreased by Ca filling. Reasonable thermoelectric figure-of-merit values were obtained for Ca-filled Co-rich p-type skutterudites.  相似文献   

18.
Our group has focused attention on Ga2Te3 as a natural nanostructured thermoelectric material. Ga2Te3 has basically a zincblende structure, but one-third of the Ga sites are structural vacancies due to the valence mismatch between Ga and Te. It has been confirmed that (1) vacancies in Ga2Te3 exist as two-dimensional (2D) vacancy planes, and (2) Ga2Te3 exhibits an unexpectedly low thermal conductivity (κ), most likely due to highly effective phonon scattering by the 2D vacancy planes. However, the effect of the size and periodicity of the 2D vacancy planes on κ has been unclear. In addition, it has also been unclear whether only the 2D vacancy planes reduce κ or if point-type vacancies can also reduce κ. In the present study, we tried to prepare Ga2Te3 and Ga2Se3 with various vacancy distributions by controlling annealing conditions. The atomic structures of the samples were characterized by means of transmission electron microscopy, and κ was evaluated from the thermal diffusivity measured by the laser flash method. The effects of vacancy distributions on κ of Ga2Te3 and Ga2Se3 are discussed.  相似文献   

19.
The high-temperature X-ray diffraction technique is used to study AgCuSe0.5(S,Te)0.5 crystals. It is shown that, at room temperature, the AgCuSe0.5S0.5 crystal is composed of Cu1.96S and AgCuSe phases. At a temperature of 695 K, these phases transform into a single face-centered cubic (fcc) phase. The transformation is reversible. The AgCuSe0.5Te0.5 composition consists of three phases, specifically, Cu2Te, AgCuSe, and a cubic phase. At 444 K, both orthorhombic phases simultaneously transform into a diamond-like cubic phase. In this transformation, the cubic phase plays the role of a seed. From the temperature dependence of the lattice parameters, the thermal-expansion coefficients of the phases involved in both compositions are calculated for the main crystallographic directions.  相似文献   

20.
Bi2Te3 thin films were electrodeposited at various pH values of a bismuth nitrate and tellurium oxide plating solution. Enhancement in pH results in a decrease in grain size. Transmission electron microscopy reveals the transformation of the film morphology from dispersed nanoparticles to connected chain-like nanostructures of Bi2Te3 as pH is increased. Electrical characterization for samples deposited in the temperature range of 300 K to 425 K shows a fourfold increase in Seebeck coefficient, S, between its maximum and minimum value as the solution pH changes from 1 to 3.5. Such enhancement of S is attributed to the increased connectivity of the nanostructures at higher pH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号