首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The substitution of CaCl2 by MgCl2 was undertaken in Deak’s two-step process of separating the soybean 11S and 7S globulins, aiming at higher purities and lower phytic acid (PA) contents of recovered protein fractions. The effects of pH and the addition of NaCl were also evaluated. Compared with CaCl2, MgCl2 reduced the PA content of the 11S-rich fraction by 63–71% but increased that of the 7S-rich fraction by 14–28%, depending on pH. Correspondingly, more Ca2+ was recovered in the 11S-rich fraction, while more Mg2+ co-precipitated with the 7S-rich fraction. NaCl increased the purity of the 11S-rich fraction and reduced its PA content, but the purity of the 7S-rich fraction was reduced by using 50–100 mM NaCl. Lowering pHs from 6.4 and 4.8 to 5.6 and 4.0 in the two precipitation steps increased the yield of both fractions. The optimized fractionating procedure was as follows: the 11S-rich fraction was precipitated at pH 5.8 by using 5 mM MgCl2, 10 mM NaHSO3 and 20 mM NaCl, followed by the precipitation of the 7S-rich fraction at pH 4.5. The new method provided both fractions with satisfactory protein yields (22% for 11S and 16% for 7S), purities (88% for 11S and 80% for 7S) and PA contents (0.356% for 11S and 0.882% for 7S).  相似文献   

2.
The ferrous oxidation ability of Acidithiobacillus ferrooxidans was studied in the presence of Ni2+, V4+ and Mo6+ in 9 K media in order to implement the culture in the bioleaching of spent catalyst. The rate of iron oxidation decreased with increasing concentration of metal ions, but the rate of inhibition was metal-ion dependent. The tolerance limit was critical at a concentration of 25 g/L Ni2+, 5 g/L V4+ and 0.03 g/L Mo6+. The growth rate of microorganisms was negligible at concentrations of 6 g/L V4+ and 0.04 g/L Mo6+. Levels and degree of toxicity of these ions have been quantified in terms of a toxicity index (TI). The toxicity order of metal ions was found to be Mo6+>V4+>Ni2+. The significance and relevance of multi-metal ion tolerance in Acidithiobacillus ferrooxidans has been highlighted with respect to bioleaching of spent refinery catalyst.  相似文献   

3.
In this study, the amino silane coupling agent (KH550)-modified SrAl204: Eu2+, Dy3+ phosphor powder coated with phenolic epoxy resin (EOCN) in the presence of triarylsulfonium hexafluoroantimonate catalyst was prepared using the combination of organic–inorganic composite dip-coating and UV curing coating methods. The results of SEM, TEM, and FTIR showed that the organic coating was a layer of compact membrane with a thickness of 20–50 nm, which can be named silane-modified epoxy monomer generated by the KH550 and the EOCN. Furthermore, it was observed that afterglow and spectrum properties of the coated phosphor powder had good long-afterglow luminescence properties, and revealed two emission peaks at 435 nm and 520 nm under the same excitation wavelength of 360 nm, respectively. More interesting, the emitting color of the coated sample was located in the area of cyan light on CIE1931 chromaticity diagram, which led to a slight blue shift rather than the yellow–green color of the pure SrAl204: Eu2+, Dy3+ phosphor powder.  相似文献   

4.
Er3+,Yb3+ co-doped CaWO4 polycrystalline powders were prepared by a solid-state reaction and their up-conversion (UC) luminescence properties were investigated in detail. Under 980 nm laser excitation, CaWO4: Er3+,Yb3+ powder exhibited green UC emission peaks at 530 and 550 nm, which were due to the transitions of Er3+ (2H11/2)→Er3+ (4I15/2) and Er3+ (4S3/2)→Er3+ (4I15/2), respectively. Effects of Li+ tri-doping into CaWO4: Er3+,Yb3+ were investigated. The introduction of Li+ ions reduced the optimum calcinations temperature about 100 °C by a liquid-phase sintering process and the UC emission intensity was remarkably enhanced by Li+ ions, which could be attributed to the lowering of the symmetry of the crystal field around Er3+ ions.  相似文献   

5.
SrAl2O4: (Eu2+, Dy3+) phosphor was prepared by solid state reaction. B2O5 as a flux was added in SrAl2O4:(Eu 2+, Dy3+) in order to accelerate a solid state reaction. In this paper, the effects of B2O3 on the crystal structure and the phosphorescent properties of the material have been evaluated. The synthesized phosphor exhibited a broad band emission spectrum peaking at 520 nm, and the spectrum peak showed little effect by the B2O3 contents. The maximum afterglow intensity of the SrAl2O4: (Eu2+, Dy3+) phosphor was obtained at the B2O3 content of 5%. Adding the B2O3 caused uniform distortion to the crystal structure of the phosphor and resulted in reducing the lengths of a and c axes and Β angle of the SrAl2O4 crystal. The uniform distortion was accompanied with crystal defects which can trap the holes generated by the excitation of Eu2+ ions. The afterglow characteristic of the SrAl2O4: (Eu2+, Dy3+) phosphor was thus enhanced.  相似文献   

6.

Abstract  

Co/SiO2 catalysts with highly dispersed Co0 and reducible Co were prepared by impregnation using an aqueous solution of Co nitrate containing ethylene glycol or its homologs. Addition of glycols enhanced FTS activity by a factor of 4. Particle size of Co0 decreased from 30 to below 6 nm, while TOF of the catalysts was independent of the Co0 particle size.  相似文献   

7.
C4+ and S4+-codoped titanium dioxide (TiO2) having a rutile phase was prepared. By doping C4+ and S4+ ions into a TiO2 lattice, the absorption edge of rutile TiO2 powder was largely shifted from 400 to 700 nm. 2-Methylpyridine and methyleneblue were photocatalytically oxidized at high efficiency on C4+ and S4+-doped TiO2 under visible light at a wavelength longer than 5 nm.  相似文献   

8.
The polycrystalline Eu2+ and Dy3+ codoped strontium aluminates SrAl2O4: Eu2+,Dy3+ were prepared by a solid-state reaction. The UV-excited photoluminescence, persistent luminescence, and thermoluminescence of the SrAl2O4: Eu2+,Dy3+ phosphors with different compositions and ion doping was studied and compared. The results showed that the Eu2+ ion doped in SrAl2O4: Eu2+,Dy3+ phosphors is not only the UV-excited luminescent center but also the persistent luminescent center. The Dy3+ ion introduced into SrAl2O4: Eu2+ crystal matrix can hardly yield any luminescence under UV excitation but acts as an electron trap with a suitable depth for persistent luminescence. The Dy3+ codoping would effectively enhance the persistent luminescence and thermoluminescence. Different codoping RE 3+ ions have a different effect on persistent luminescence. Only the RE 3+ ions (for example, Dy3+ and Nd3+), which have suitable optical electronegativity, can form suitable electron traps and effectively improve the persistent luminescence of SrAl2O4: Eu2+. Based on the above observations, a persistent luminescence mechanism, electron transfer model, was proposed and illustrated. The text was submitted by the authors in English.  相似文献   

9.
Eu2+ doped glass ceramics have been prepared and characterized. The crystallization and optical properties of the glass ceramics were studied by XRD, SEM, and fluorescence spectra. The precipitated crystalline phase in the glass ceramics was prismatic diopside (CaMgSi2O6) and plate-like cristobalite (β-SiO2). As the heat treatment time increases, the content of crystals increases gradually. Fluorescence measurements showed that Eu2+ ions entered into the diopside crystalline phase and induced a much stronger emission in the glass ceramics than that in the corresponding glass. With increase of Eu2+ content, concentration quenching was observed.  相似文献   

10.
The purpose of this work is the synthesis of two series of layered silicate materials with different ratios (10, 30, 50, 80 and 100) of Cu(NO3)2, or Zn(NO3)2 by ion-exchange method. Several analysis techniques have been used such as X-ray diffraction, energy dispersive X-ray spectroscopy, thermogravimetric analysis, scanning electron microscope and Fourier transform infrared spectroscopy. The results revealed that ion-exchange method of copper and zinc with different ratios did not affect the structure of Na-magadiite. The gap between the theoretical and experimental ion-exchange are in agreement. Antibacterial activity test against Escherichia coli, Rhizobium sp. and Staphylococcus demonstrate that when ratio was (30, 50, 80 and 100) the antibacterial activity of the layered silicate materials showed high antibacterial activity.  相似文献   

11.
12.
The photo-electrochemical characterization of the hetero-system CoFe2O4/TiO2 was undertaken for the Ni2+ reduction under solar light. The spinel CoFe2O4 was prepared by nitrate route at 940 °C and the optical gap (1.66 eV) was well matched to the sun spectrum. The flat band potential (-0.21 VSCE) is more cathodic than the potential of Ni2+/Ni couple (-0.6 VSCE), thus leading to a feasible nickel photoreduction. TiO2 with a gap of 3.2 eV is used to mediate the electrons transfer. The reaction is achieved in batch configuration and is optimized with respect to Ni2+ concentration (30 ppm); a reduction percentage of 72% is obtained under sunlight, the Ni2+ reduction is strongly enhanced and follows a first order kinetic with a rate constant of 4.6×10-2 min-1 according to the Langmuir-Hinshelwood model.  相似文献   

13.

Abstract  

A series of Zn2+ and W6+ doped tin oxide (SnO2) thin films with various dopant concentrations were prepared by spray pyrolysis deposition, and were characterized by X-ray diffraction, atomic force microscopy, contact angle, absorbance, current density–voltage (J–V) and photocurrent measurements. The results showed that W6+ doping can prevent the growth of nanosized SnO2 crystallites. When Zn2+ ions were used, the crystallite sizes were proved to be similar with the undoped sample due to the similar ionic radius between Zn2+ and Sn4+. Regardless of the dopant ions’ type or concentration, the surface energy has a predominant dispersive component. By using Zn2+ dopant ions it is possible to decrease the band gap value (3.35 eV) and to increase the electrical conductivity. Photocatalytic experiments with methylene blue demonstrated that with zinc doped SnO2 films photodegradation efficiencies close to 30% can be reached.  相似文献   

14.
This paper reports on the preparation and spectral properties of europium (Eu3+) and terbium (Tb3+) ions doped cadmium lead boro tellurite (CLBT) glasses. For reference glasses, physical properties have been evaluated. From the [measurements of X-ray diffraction (XRD), glass amorphous nature of these [glasses has been studied. From the emission spectra of Eu3+: CLBT glasses, five [transitions (5 D 07 F 0, 7 F 1, 7 F 2, 7 F 3 and 7 F 4) at 579, 591, 613, 652 and 701 nm are observed with λexci = 392 nm (7 F 05 L 6) and in the case of Tb3+: CLBT glasses, four emission transitions 5 D 4 → (7 F 6, 7 F 5, 7 F 4 and 7 F 3) are observed at 489, 543, 584 and 621nm respectively monitered with λexci = 376 nm (7 F 65 G 6).  相似文献   

15.
The influence of the stabilizer and thermal treatment on the luminescence and surface properties of ZnS: Mn2+ nanosized phosphors has been studied. It has been found that ammonium polyacrylate is the optimal stabilizer for the use in the preparation of phosphors with nanoparticles that exhibits the highest brightness without applying thermal treatment. Analysis of the correlation between the luminescence spectral bands and the content of active surface adsorption sites has demonstrated that the model of active sites previously developed for the surface of zinc sulfide phosphors with large particles can also be used for nanosized phosphors.  相似文献   

16.
The local structures and spin Hamiltonian parameters are theoretically studied for Cu2+ in alkali barium borate glasses 20A2O ? 24.5BaO · 55B2O3 · 0.5CuO, where A = Li, Na and K by the quantitative calculations of these parameters for tetragonally elongated octahedral 3d 9 clusters. The [CuO6]10? clusters are subject to the local relative tetragonal elongation ratios 7.8, 8.1 and 8.4% in Li, Na and K barium borate glasses, respectively, owing to the Jahn–Teller effect. The increasing (Li < Na < K) local relative elongation ratio and decreasing cubic field parameter and covalency factor are discussed in a consistent way.  相似文献   

17.

Abstract  

Twelve phosphomolybdate compounds were synthesized via cationic exchange and were of the form: M x H3–3x [PMo12O40] (M = Al, La or Ce; 0 ≤ x ≤ 1). These compounds were analyzed by XRD and adsorption isotherm. Aluminum addition causes a primitive cubic phase, while lanthanum and cerium yield body-centered structures. La and Ce addition reduces surface area of phosphomolybdate structure. Temperature-programmed experiments for the selective oxidation of isobutane yielded methacrolein, 3-methyl-2-oxetanone (lactone), acetic acid (not with aluminous compounds), propene (only with aluminous compounds), carbon dioxide and water. The preference for propene rather than acetic acid formation with Al3+ may be due to the smaller cation size, or primitive cubic structure. These products form via two distinct reaction processes, labeled categories 1 and 2. Category 1 formation is associated with isobutane forming products on the surface, but reaction rate determined by bulk migration of charged particles. Category 2 formation is concerned with isobutane penetrating deep within the bulk of the substrate and forming products which subsequently desorb in a series of bell-shaped humps. Methacrolein forms via both category 1 and 2, whilst all other products form via category 2 exclusively. Kinetic analysis showed apparent activation barriers for category 1 methacrolein formation range from 67 ± 2 kJ mol−1 to >350 kJ mol−1, and occur in groups with small, medium and large activation barriers. The addition of +3 metal cations to the phosphomolybdate anion increase thermal stability, significantly decreasing deactivation; IR spectroscopy shows that the Keggin structure remains intact during temperature-programmed experiments with the Al, La and Ce salts.  相似文献   

18.
Rare earth exchanged Na–Y zeolites, H-mordenite, K-10 montmorillonite clay and amorphous silica-alumina were effectively employed for the continuous synthesis of nitriles. Dehydration of benzaldoxime and 4-methoxybenzaldoxime were carried out on these catalysts at 473 K. Benzonitrile (dehydration product) was obtained in near quantitative yield with benzaldoxime whereas; 4-methoxybenzaldoxime produces both Beckmann rearrangement (4-methoxyphenylformamide) as well as dehydration products (4-methoxy benzonitrile) in quantitative yields. The production of benzonitrile was near quantitative under heterogeneous reaction conditions. The optimal protocol allows nitriles to be synthesized in good yields through the dehydration of aldoximes. Time on stream (TOS) studies show decline in the activity of the catalysts due to neutralization of acid sites by the basic reactant and product molecules and water formed during the dehydration of aldoximes.  相似文献   

19.
Glasses of the system 75TeO2–20ZnO–5La2O3–0.8Tm2O3xYb2O3 were prepared by high temperature melt cooling method. Results of differential scanning calorimetry indicate that, all glass samples have excellent thermal stability. Judd–Ofelt strength parameters, spontaneous emission probabilities, fluorescence branching rations, fluorescence radiative lifetime of Tm3+ ions in tellurite glass were calculated. The impact of Yb3+ concentration on the fluorescence properties of Tm3+ ions in the S band under the pumping wavelength of 465 nm was investigated in a suggestion that, 3H4 radiative lifetimes will be prolonged and the performance of optical amplifier gain of Tm3+ in tellurite glass co-doped with 0.5 mol % Yb3+ ions will be improved.  相似文献   

20.
A novel electrochemical procedure was developed for the facile preparation of Gd-doped iron oxide nanoparticles (GdIO-NPs). A simple galvanostatic deposition (i=10 mA cm-2) was done in an additive-free aqueous solution containing FeCl2·4H2O, Fe(NO3)3·9H2O and GdCl3·6H2O. The XRD, FE-SEM, EDS and TEM characterizations showed that the product is composed of 15% GdIO-NPs with 10 nm in size. VSM analysis proved that the GdIO-NPs are superparamagnetic. The cyclic voltammetry and charge-discharge tests showed that the prepared GdIO-NPs are capable to deliver specific capacity as high as 190.1 F g-1 at 0.5A g-1 and capacity retention of 95.1% after 2000 cycling. Based on the results, it was concluded that the developed electrochemical strategy acts as an efficient procedure for the preparation of lanthanide doped MNPs with proper magnetic and supercapacitive characters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号