首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
轻质Si-Al电子封装材料制备工艺的研究   总被引:8,自引:0,他引:8  
探讨采用传统粉末冶金方法制备轻质、高性能Si-50%Al(质量分数,下同)电子封装材料的可能性。研究了粉末粒度组成、压制压力、烧结温度对材料室温导热性和室温到200℃间热膨胀系数的影响。发现采用一定的粉末粒度组成,高压制压力、高温和适当的时间烧结能够获得综合性能较好的Si-Al复合材料。  相似文献   

2.
如何提高金刚石等超硬材料的耐热性对其应用具有着重要意义.本文报道了在高温高压(HPHT,5~6 GPa,1 620~1 720 K,3~5 min)烧结条件下块体金刚石复合材料(D-cBN-B4C-Co-Al-Si)的合成和表征工作.实验结果表明,在烧结样品中存在金刚石,cBN,B_4C,B_xSiC,AlCo,AlN等物相.值得注意的是,合成样品的初始氧化温度为1520 K,其值远远高于金刚石,cBN和B_4C的初始氧化温度.高热稳定性归因于在烧结过程中形成B—C、C—Si共价键和B_xSiC固溶体.该项研究获得的成果有助于制备具有耐高温的复合超硬材料.  相似文献   

3.
Nanocrystalline diamond films were deposited on polished Si wafer surface with electron assisted hot filament chemical vapor deposition at 1 kPa gas pressure, the deposited films were characterized and observed by Raman spectrum, X-ray diffraction, atomic force microscopy and semiconductor characterization system. The results show that when 8 A bias current is applied for 5 h, the surface roughness decreases to 28.5 nm. After 6 and 8 A bias current are applied for 1 h, and the nanocrystalline films deposition continue for 4 h with 0 A bias current at 1 kPa gas pressure. The nanocrystalline diamond films with 0.5×109 and 1×1010 Ω·cm resistivity respectively are obtained. It is demonstrated that electron bombardment plays an important role of nucleation to deposit diamond films with smooth surface and high resistivity.  相似文献   

4.
机械合金化纳米晶材料研究进展   总被引:17,自引:0,他引:17  
综述了机械合金化制备纳米晶材料的研究进展,重点介绍了高强度铝合金,铜合金,难熔金属化合物,金属储氢材料,复相烯土永磁材料等几类机械合金化纳米晶材料的制备与组织性能,指出了机械合金化技术在纳米晶材料制备方面的优势及应用前景。  相似文献   

5.
采用纳米级β-SiC粉末、Si粉末、C粉末以及微米级TiH_2粉末为原料,利用热等静压原位合成工艺制备了SiC–TiC复相陶瓷,研究了不同原位合成反应和烧结工艺对复相陶瓷微观组织及力学性能的影响。结果表明:以SiC、TiH_2、C粉末为原料的原位合成反应,无明显副反应发生,更有益于制备成分符合预期、致密度良好且性能优秀的SiC–TiC复相陶瓷。在1600℃,120 MPa,4 h等静压烧结工艺下原位合成得到的体积分数为SiC–32%TiC复相陶瓷具有最好的致密度、硬度、三点弯曲强度以及良好的断裂韧性,分别达到98.7%、21.2 GPa、428 MPa和5.5 MPa·m1/2。提高热等静压压力有助于提高材料的烧结扩散活性,从而提高材料的致密度,有益于力学性能的提升。  相似文献   

6.
概括了铁基非晶软磁合金和纳米晶合金的发展历史和现状,分别详述了高饱和磁化强度(Bs)铁基块体和薄带非晶以及纳米晶合金近年来的研究成果.主要内容包括:高饱和磁化强度块体铁基非晶软磁合金成分和性能,高饱和磁化强度铁基非晶薄带软磁合金的成分和性能,高饱和磁化强度铁基纳米晶合金的组织、结构和性能,各类元素对合金磁性能的影响.为进一步研究高饱和磁化强度的铁基软磁材料提供了有价值的参考.   相似文献   

7.
Recently, amorphous and nanocrystalline magnetically soft iron alloys have been used to create protective materials that are effective in a broad range of magnetic and electromagnetic fields. These alloys are obtained in strip form by superfast quenching of a plane melt jet on a rapidly spinning cooled disk. In the production of amorphous strip, metal melted in a high-frequency inductor is supplied through a cut on the surface of the cooling disk. The surface layers of the congealing strip in contact with the cooled disk are cooled more rapidly than higher layers in no contact with the disk. As a result, residual compressive stress may be formed on the contact side of the strip, while tensile stress may be formed on the free side. This may lead to anisotropic structure and properties over the strip thickness. In the present work, the structure is investigated by transmission microscopy (planar geometry and cross-sectional geometry) over the thickness of AMAG-200 Fe–Nb–Cu–Si–B alloy strip obtained by spinning. A relation is established between AMAG-200 Fe–Nb–Cu–Si–B alloy strip produced in controlled crystallization and the structure of the amorphous strip obtained by superfast quenching of melt at rates up to 106 K/s. That explains the structural anisotropy over the strip thickness. Heat treatment at 530°C forms excellent magnetic characteristics and decreases the work of destruction on account of the formation of optimal amorphous–nanocrystalline structure in terms of the bulk content and size of the crystallites. A scanning electron microscope is used to study the destruction of strip associated with the structure formed in the strip on superfast quenching from melt and after heat treatment at 530°C. In the state supplied, the surface fracture of the strip on sudden decrease in grain size is ductile; after heat treatment, it is consistently brittle.  相似文献   

8.
In the present investigation, Al–X?wt-% Mg2Si (X?=?0, 5, 10, 15 and 20) in situ composites are successfully synthesised by one-step gravity casting technique. Commercially pure Al, Mg and Si are used as raw materials. Microstructural evaluation and correlation of micro- and bulk hardness properties have been studied on developing composites. The composites consist of mainly three phases: matrix (α-Al), reinforcing (primary Mg2Si) and binary eutectic (Al–Mg2Si) phase. Primary Mg2Si particles are formed by pseudo-eutectic transformation during solidification and surrounded by matrix and binary eutectic phase. It is found that Mg2Si concentration has a significant impact on morphology and volume per cent of the above-mentioned phases. Primary Mg2Si particles’ size and volume per cent increase with increasing wt-% of Mg2Si. Volume per cent of individual phases and Mg2Si concentration have great impact on hardness properties of composites. Bulk hardness increases with increasing wt-% of Mg2Si concentration, but micro-hardness of primary Mg2Si particle decreases slightly. Mg2Si concentration also has significant impact on micro-hardness of individual phases.  相似文献   

9.
The aims of this work were to produce nanocrystalline powder by mechanical alloying of Co–W–Si powder mixture in a high energy ball mill and to study the phase transformation that took place during 30 h milling time. The phase constituents of the product were evaluated by X-ray diffraction (XRD). The morphological evolution during mechanical alloying was analyzed using scanning electron microscopy. The results showed that high energy ball milling, as performed in the present work, led to the formation of a Co(W,Si) solid solution and an WSi2 both of which phases were nanocrystalline. Subsequently, the 10 and 30 h milled powders were analyzed by DTA. The XRD investigations of the powders revealed that after DTA analyzing, no phase changed, except for the ordering of Co(W,Si), i.e. formation of CoWSi intermetallic compound, during the DTA analysis.  相似文献   

10.
In this work, we report the tuning effect of the Si substitution on the magnetic and high frequency electromagnetic properties of R2Fe17 compounds and their paraffin composites. It is found that the introduction of Si can remarkably improve the magnetic and electromagnetic properties of the R2Fe17 compounds, making the R2Fe17–xSix-paraffin composites excellent microwave absorption materials (MAMs). By introducing the Si element, their saturation magnetizations decrease slightly, while much higher Curie temperatures are obtained. Furthermore, better impedance match is reached due to the decrease of the high-frequency permittivity ε′ by about 40%–50%, which finally enhances the performance of the microwave absorption. The peak frequency (fRL) of the reflection loss (RL) curve moves toward high frequency domain and the qualified bandwidth (QB, RL ≤ ?10 dB) increases remarkably. The maximum QB of 3.3 GHz (12.0–15.3 GHz) is obtained for the Sm1.5Y0.5Fe15Si2-paraffin composite (d = 1.0 mm) and the maximum RL of ?53.6 dB is achieved for Nd2Fe15Si2-paraffin composite (d = 2.2 mm), both surpassing most of the reported MAMs. Additionally, a distinguished dielectric microwave absorption peak is observed, which further increases the QB in these composites.  相似文献   

11.
Available information concerning the mechanical and physical properties of nanocrystalline refractory compounds (carbides, borides, nitrides and oxides) with grain size below 100 nm is analyzed. The absolute hardness values for these compounds in the nanocrystalline state are not as high as those of nanocrystalline metals and intermetallics. Information regarding the creep, superplasticity, and other physical properties is also reported. The effect of particle size on the eutectic temperature of nanocrystalline composites is estimated.  相似文献   

12.
Work by researchers at the Russian Academy of Sciences on new materials (metals and ceramics) and new technologies is reviewed. The topics include new high-strength corrosion-resistant nitrogen steels; high-temperature light alloys and composites based on intermetallics; modifiers for wheel steels; complex ferroalloys containing V, Cr, and Ni; anticorrosive protective coatings based on ultrafine Zn powders; catalytic converters for vehicle exhaust gases; magnetically hard materials with high temperature–time stability and excellent mechanical characteristics; nanostructured stents for endovascular operations; and corrosionand wear-resistant coatings and corresponding methods of plasma application. Methods have been developed for longitudinal rolling with shear deformation to improve the properties of the rolled product; recycling of oily scale; monitoring of the wear of the refractory lining at any point of the blast-furnace hearth; and monitoring of the content of inclusions in rail steel. Technologies have been developed for special electroproduction of steel for the power industry; synthesis of massive monocrystalline samples of transition-metal nitrides and nanopowders of W, Pt, and Ti and their carbides and nitrides; the processing of leucoxene concentrates from the Yareg Basin; the production of titanium implants with porous coatings; ferrous and nonferrous metal shot and powder; ultrafine Zn powder; recycling of metallurgical wastes with the extraction of Zn, Sb, Sn, and Fe; the production of sintered nanocrystalline Ta powder for capacitors; the processing of molybdenum-bearing sulfide material to obtain rare-earth metals, MoO3, and CaMoO4; and the utilization of sulfur dioxide. Injection units and technologies for their use have been developed, as well as high-speed systems for the plasma application of metals on surfaces including paint coatings, plastics, and cardboard. Data have been obtained regarding the thermodynamic functions of the solution of oxygen in Fe-based melts and the reactions of elements dissolved in such melts (Cr, Mn, Nb, V, Si, B, C, Ti, Zr, Al) with oxygen.  相似文献   

13.
将Hummers法制备的氧化石墨烯(graphene oxide,GO)与纳米硅粉进行超声复合和高温氢还原,制备锂离子电池用纳米硅/石墨烯(Si/G)复合材料。利用扫描电镜、透射电镜、X射线衍射和Raman光谱分析,对Si/G复合材料的形貌与结构进行分析与表征,并测试其电化学性能。结果表明,通过高温氢还原,氧化石墨烯全部还原为石墨烯,无其它杂质相生成。石墨烯包覆在纳米硅颗粒表面,形成层状复合结构;与纯纳米硅粉相比,Si/G复合材料的电化学性能明显提高,在300 m A/g电流密度下,首次放电比容量为2 915.0(m A·h)/g,首次充电比容量为1 080.5(m A·h)/g,20次循环后比容量稳定在969.6(m A·h)/g,库伦效率为99.8%;而纯纳米硅粉的首次放电比容量和首次充电比容量分别为932.7和349.4(m A·h)/g,20次循环后比容量仅为6.4(m A·h)/g。  相似文献   

14.
Si-Al电子封装材料粉末冶金制备工艺研究   总被引:12,自引:3,他引:12  
采用粉末冶金液相烧结工艺制备了Si-50%Al(质量分数)电子封装材料。研究了压制压力、烧结工艺对材料微观组织及性能的影响。结果发现:低温烧结时,随压制压力增大,材料密度呈上升趋势,而高温烧结时,材料密度较高且变化不大;增大压制压力不仅提高了材料的致密度,而且改善了界面接触方式,在一定范围内使得材料热导率提高,但压制压力过大时,则会导致Si粉出现大量的微裂纹等缺陷,界面热阻急剧上升,从而降低热导性能;适当提高烧结温度和延长烧结时间可以提高材料的热导率。  相似文献   

15.
通过铝热反应法分别制备未加Si和加Si的块体纳米晶Fe-Al-Cr和Fe-Al-Mn材料.利用OM,XRD,EPMA和TEM对制得的材料进行微观组织观察.结果表明:加入质量分数为5%的Si之后,2种材料的平均晶粒尺寸变化不大;含10%Cr的材料晶体结构没有发生变化,均由无序bcc结构组成,而含15%Mn材料的晶体结构由...  相似文献   

16.
采用高温热解方法成功地合成了高容量硅/碳复合负极材料.通过X射线衍射分析、热重分析、扫描电子显微镜观察、透射电子显微镜观察、恒电流充放电测试、循环伏安法等手段研究了复合材料的性能.结果表明:硅/碳复合材料由Si、C以及少量SiO2组成;硅/碳复合材料中碳的质量分数约在39%左右;经电化学性能测试,在电流0.2 m A下,该硅/碳复合材料首次充电容量768 m Ah·g-1,首次库仑效率75.6%,70次循环后可逆比容量仍为529 m Ah·g-1,平均容量衰减率为0.44%.这些性能改善归因于硅/碳复合材料中碳的引进,硅表面存在的碳涂层提供了一个快速锂运输通道,降低了电池的阻抗并且充放电过程中稳定了电极的组成.   相似文献   

17.
Inviewofenergysavingandenvironmentalpro tection ,magneticrefrigerationnearroomtemperaturehasastrongimpactonconventionalgascompressiontechnology .However ,coolingefficiencyofthesystemformagneticrefrigerationismainlydecidedbythemagnitudeofmagnetocaloriceffectformagneticrefrig eratingmaterialsinthesystemunderacertainmagnet icfieldchange .Therefore ,developmentofnewrefrig eratingmaterialswithgreatmagnetocaloriceffectnearroomtemperatureisespeciallyimportant .Therearetwoparameterswhichareusedtochara…  相似文献   

18.
以铜粉、硅粉和石墨粉为原料, 采用高能球磨和等离子烧结技术, 原位合成了SiC–Cu复合材料。为研究SiC质量分数对复合材料导电和抗拉性能的影响, 利用场发射扫描电子显微镜(field-emission scanning electron microscope, FESEM)和能谱仪(energy disperse spectroscopy, EDS)表征SiC–Cu复合材料的相组成及断口显微组织形貌, 并对其电导率和抗拉强度进行测试。结果表明, 采用原位反应烧结可以成功制备出SiC–Cu复合材料; 当SiC理论质量分数低于1%时, SiC–Cu复合材料的电导率随SiC理论质量分数的增加逐渐下降, 电导率最大值为70.2%IACS; 同样条件下, SiC–Cu复合材料的抗拉强度呈先升高后降低的趋势, 在SiC理论质量分数为0.3%时, 抗拉强度有极值, 极值为207.4 MPa。  相似文献   

19.
为改善Mo5Si3的室温脆性,以Mo、Cu、Si粉体为原料,通过热压反应烧结原位合成制备了(Cu-Mo)/Mo5Si3复合材料。其微观组织由Mo5Si3和少量Mo形成的相和Cu基固溶体相两相组成,且各相分布均匀、组织致密。随着Cu含量(质量分数)的增加,Mo5Si3的体积分数减少,材料的硬度下降,而相对密度、抗弯强度和断裂韧度提高。Cu和Mo的协同增韧,加之Mo5Si3的高强度和高硬度使(Cu-Mo)/Mo5Si3复合材料具有良好的强韧性配合。  相似文献   

20.
Experiments have been conducted on an aluminum alloy and an aluminum matrix composite tested in tension under the influence of superimposed hydrostatic pressure. Monolithic alloys heat-treated to underaged (UA) and overaged (OA) conditions exhibited significant differences in their responses to the superimposition of hydrostatic pressure during tension testing. Significant increases in ductility were obtained with moderate increases in confining pressure for the OA alloy, while the UA alloy exhibited little effect of pressure. In contrast, significant increases in ductility were obtained for the composites, regardless of the matrix aging condition. The effects of pressure on frature are determined in light of the micromechanisms of fracture in these materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号