首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of conduction band offset of window/Cu(In,Ga)Se2 (CIGS) layers in wide-gap CIGS based solar cells are investigated. In order to control the conduction band offset, a Zn1−xMgxO film was utilized as the window layer. We fabricated CIGS solar cells consisting of an ITO/Zn1−xMgxO/CdS/CIGS/Mo/glass structure with various CIGS band gaps (Eg≈0.97–1.43 eV). The solar cells with CIGS band gaps wider than 1.15 eV showed higher open circuit voltages and fill factors than those of conventional ZnO/CdS/CIGS solar cells. The improvement is attributed to the reduction of the CdS/CIGS interface recombination, and it is also supported by the theoretical analysis using device simulation.  相似文献   

2.
The effects of sodium on off-stoichiometric Cu(In,Ga)Se2 (CIGS)-based thin films and solar cells were investigated. The CIGS-based films were deposited with intentionally incorporated Na2Se on Mo-coated SiOx/soda-lime glass substrates by a multi-step process. By sodium control technique high-efficiency ZnO : Al/CdS/CIGS solar cells with efficiencies of 10–13.5% range were obtained over an extremely wide Cu/(In + Ga) ratio range of 0.51–0.96, which has great merit for the large-area manufacturing process. The improved efficiency in the off-stoichiometric regions is mainly attributed to the increased acceptor concentration and the formation of the Cu(In,Ga)3Se5 phase films with p-type conductvity. A new type of solar cell with p-type Cu(In,Ga)3Se5 phase absorber materials is also suggested.  相似文献   

3.
Improved preparation process of a device quality Cu(In,Ga)Se2 (CIGS) thin film was proposed for production of CIGS solar cells. In–Ga–Se layer were deposited on Mo-coated soda-lime glass, and then the layer was exposed to Cu and Se fluxes to form Cu–Se/In–Ga–Se precursor film at substrate temperature of over 200°C. The precursor film was annealed in Se flux at substrate temperature of over 500°C to obtain high-quality CIGS film. The solar cell with a MgF2/ITO/ZnO/CdS/CIGS/Mo/glass structure showed an efficiency of 17.5% (Voc=0.634 V, Jsc=36.4 mA/cm2, FF=0.756).  相似文献   

4.
In this study, two deposition methods (i.e. MOCVD and sputtering methods) to prepare n-type ZnO window layers for CIGS-based thin-film solar cells are discussed. In order to make ZnO : Al transparent conductive oxide (TCO) films prepared by DC magnetron sputtering comparable to ZnO : B TCO prepared by MOCVD, a new ZnO sputtering process is proposed by introducing a multilayer structure. Using these films, CIGS thin-film solar cells with efficiencies of greater than 14% have been fabricated with an active area of 3.2 cm2. This structure was adapted to fabricate CIGS thin-film mini-modules with efficiencies around 11% having aperture area of 50 cm2.  相似文献   

5.
An adjustment of a conduction band offset (CBO) of a window/absorber heterointerface is important for high efficiency Cu(In,Ga)Se2 (CIGS) solar cells. In this study, the heterointerface recombination was characterized by the reduction of the thickness of a CdS layer and the adjustment of a CBO value by a Zn1−xMgxO (ZMO) layer. In ZnO/CdS/CIGS solar cells, open-circuit voltage (Voc) and shunt resistance (Rsh) decreased with reducing the CdS thickness. In constant, significant reductions of Voc and Rsh were not observed in ZMO/CdS/CIGS solar cells. With decreasing the CdS thickness, the CBO of (ZnO or ZMO)/CIGS become dominant for recombination. Also, the dominant mechanisms of recombination of the CIGS solar cells are discussed by the estimation of an activation energy obtained from temperature-dependent current-voltage measurements.  相似文献   

6.
CuIn1−xGaxSe2 (CIGS) thin films were formed from an electrodeposited CuInSe2 (CIS) precursor by thermal processing in vacuum in which the film stoichiometry was adjusted by adding In, Ga and Se. The structure, composition, morphology and opto-electronic properties of the as-deposited and selenized CIS precursors were characterized by various techniques. A 9.8% CIGS based thin film solar cell was developed using the electrodeposited and processed film. The cell structure consisted of Mo/CIGS/CdS/ZnO/MgF2. The cell parameters such as Jsc, Voc, FF and η were determined from I–V characterization of the cell.  相似文献   

7.
A comparative study of the cell performance of CIGS thin-film solar cells fabricated using ZnO:Al and ZnO:B window layers has been carried out. ZnO:B films were deposited by RF magnetron sputtering using an undoped ZnO target in a B2H6–Ar gas mixture. The short-circuit current (Jsc) was found to improve upon the replacement of the ZnO:Al layer with ZnO:B layers. This improvement in Jsc is attributed to an increase in quantum efficiency due to the higher optical transmission of the ZnO:B layer in the near-infrared region. The best cell fabricated with a MgF2/ZnO:B/i-ZnO/CdS/CIGS/Mo structure yielded an active area efficiency of 18.0% with Voc=0.645 V, Jsc=36.8 mA/cm2, FF=0.76, and an active area of 0.2 cm2 under AM 1.5 illumination.  相似文献   

8.
We have developed the flexible Cu(In,Ga)Se2 (CIGS) solar cells on the stainless steel substrates with the insulating layer for the fabrication of the integrated module. The CIGS films have strong adhesion to the Mo films with insulating layers. An efficiency of 12.3% was achieved by the flexible CIGS solar cell with a structure of ITO/ZnO/CdS/CIGS/Mo/SiO2/stainless steel. The insertion of the SiO2 insulating layer did not have an influence on the formation of the CIGS film and solar cell performances.  相似文献   

9.
Polycrystalline Cu(InGa)Se2 (CIGS) thin-film solar cells using evaporated InxSey and ZnInxSey buffer layers are prepared. The purpose of this work is to replace the chemical bath deposited CdS buffer layer with a continuously evaporated buffer layer. In this study, a major effort is made to improve the performance of CIGS thin-film solar cells with these buffer layers. The relationship between the cell performance and the substrate temperature for these buffer layers is demonstrated. Even at the high substrate temperature of about 550°C for the buffer layer, efficiencies of more than 11% were obtained. Furthermore, the IV characteristics of the cells using these buffer layers are compared with cells using CdS buffer layers fabricated by chemical bath deposition method. We have achieved relatively high efficiencies of over 15% using both the ZnInxSey and the CdS buffer layers.  相似文献   

10.
Surface sulfurization of Cu(In,Ga)Se2 (CIGS) thin films was carried out using two alternative techniques that do not utilize toxic H2S gas; a sequential evaporation of In2S3 after CIGS deposition and the annealing of CIGS thin films in sulfur vapor. A Cu(In,Ga) (S,Se)2 thin layer was grown on the surface of the CIGS thin film after sulfurization using In2S3, whereas this layer was not observed for CIGS thin films after sulfurization using sulfur vapor, although a trace quantity of S was confirmed by AES analysis. In spite of the difference in the surface modification techniques, the cell performance and process yield of the ZnO:Al/CdS/CIGS/Mo/glass thin-film solar cells were remarkably improved by using both surface sulfurization techniques.  相似文献   

11.
In this paper we describe our research efforts directed towards the understanding of the CdS/CuInGaSe2 junctions and, specifically, the interaction of the chemical bath with the CuInGaSe2. Information gained from these studies has been used to develop a set of criteria for forming junctions without the need for chemical bath deposition or CdS. Our approach differs from many others previously used “alternative buffer layer” methods which appear to be somewhat problematic in implementation as well as in the quality of the results. This “buffer-free” technology has resulted in a 13.5% efficiency cell.  相似文献   

12.
Mesa diodes were formed on CdS/CIGS/stainless steel solar cells to investigate current transport when edge leakage and spot defects are avoided. Current conduction mechanisms in the device were determined from current–voltage (I–V) and current–voltage–temperature (I–V–T) characteristics. Space charge limited (SCL) current in the mobility regime with an exponential distribution of traps was found in the voltage range of V>0.6 V based on IVm where m>2. In the voltage region of 0.2V<V<0.6V, recombination was the dominant mechanism based on the ideality factor, n, in the equation I=Ae(qV/nkT), close to 2. For −0.2V<V<0.2V, a combination of tunneling and SCL current in the ballistic regime was suggested because of the weak temperature dependency and approximation to IV1.5. For the reverse bias region where V<−0.2 V, the device exhibited either SCL current in the velocity saturation regime or tunneling based on the unity I–V relation and the weak temperature dependency. A previous report on full size CIGS cells indicated a higher degree of tunneling for V<0.2 V. Thus, the mesa diodes show some difference in mechanism compared to “good” full cells and much difference compared to “poor” full cells.  相似文献   

13.
An accurate and fast method to calculate the efficiency of Cu(In,Ga)Se2 (CIGS) and CdTe thin-film solar modules is presented here. This comprises a new method to calculate the fill factor as a function of discrete and distributed series resistance, and of shunt conductance: a three-dimensional, third-order polynomial approximation is presented, and the expansion of the coefficients as a power series of 1/Voc is given. Analytical expressions are presented which fit experimental data of the optical absorption in ZnO as a function of its thickness or sheet resistance. Together with a calculation outline of the series and shunt effects of the module integration, this constitutes a practical module design tool. This is illustrated with results of dependence of module efficiency on cell length, window and absorber sheet resistance, interconnect contact resistance, “softness” of the cell I–V curve, and absorber material (CIGS or CdTe). Optimal or critical values for these parameters are given.  相似文献   

14.
Surface sulfurization was developed as a technique for fabricating efficient ZnO : Al/CdS/graded Cu(In,Ga)(S,Se)2/ Mo/glass solar cells. Prior to the sulfurization, single-graded Cu(In,Ga)Se2 (CIGS) films were deposited by a multi-stage process. The sulfurization of CIGS films was carried out using a H2S---Ar mixture at elevated temperatures. The crystallographic and compositional properties of the absorber layers were investigated by XRD, SEM and AES analyses. After sulfurization, sulfur atoms were substituted for selenium atoms at the surface layer of CIGS films to form a Cu(In,Ga)(S,Se)2 absorber layer. The diffusion of sulfur depends strongly on the grain structure of CIGS film. The cell efficiency of the 8–11% range before sulfurization was improved dramatically to 14.3% with Voc = 528 mV, Jsc = 39.9 mA/cm2 and FF = 0.68 after the sulfurization process.  相似文献   

15.
Pulsed non-melt laser annealing (NLA) has been used for the first time to modify near-surface defects and related junction properties in Cu(In,Ga)Se2 (CIGS) solar cells. CIGS films deposited on Mo/glass substrates were annealed using a 25 ns pulsed 248 nm laser beam at selected laser energy density in the range 20–60 mJ/cm2 and pulse number in the range 5–20 pulses. XRD peak narrowing and SEM surface feature size increase suggest near-surface structure changes. Dual-beam optical modulation (DBOM) and Hall-effect measurements indicate NLA treatment increases the effective carrier lifetime and mobility along with the sheet resistance. In addition, several annealed CdS/CIGS films processed by NLA were fabricated into solar cells and characterized by photo- and dark-JV and quantum efficiency (QE) measurements. The results show significant improvement in the overall cell performance when compared to unannealed cells. The results suggest that an optimal NLA energy density and pulse number for a 25 ns pulse width are approximately 30 mJ/cm2 and 5 pulses, respectively. The NLA results reveal that overall cell efficiency of a cell processed from an unannealed film increased from 7.69% to 13.41% and 12.22% after annealing 2 different samples at the best condition prior to device processing.  相似文献   

16.
Efficiencies of CuIn1−xGaxSe2−ySy (CIGSS) modules are comparable to those of lower end crystalline-Si modules. CIGSS layers are prepared by reactive co-evaporation, selenization/sulfurization of metallic or compound precursors, reactive co-sputtering and non-vacuum techniques. CuIn1−xGaxS2 (CIGS2) layers are prepared by sulfurization of Cu-rich metallic precursors and etching of excess Cu2−xS. Usually heterojunction partner CdS and transparent-conducting bilayer ZnO/ZnO:Al layers are deposited by chemical bath deposition (CBD) or RF magnetron sputtering. CIGSS solar cell efficiencies have been improved by optimizing Cu, Ga and S proportions and providing a minute amount of Na. This paper reviews preparation and efficiency improvement techniques for CIGSS solar cells.  相似文献   

17.
Annealed Zn1−xMgxO/Cu(In,Ga)Se2 (CIGS) interfaces have been characterized by ultraviolet light excited time-resolved photoluminescence (TRPL). The TRPL lifetime of the Zn1−xMgxO/CIGS film increased on increasing the annealing temperature to 250 °C, whereas the TRPL lifetime of the CdS/CIGS film had little change by annealing at temperatures lower than 200 °C. This is attributed to the recovery of physical damages by annealing, induced by sputtering of the Zn1−xMgxO film. The TRPL lifetime abruptly decreased with annealing at 300 °C. The diffusion of excess Zn from the Zn1−xMgxO film into the CIGS interface is clearly observed in secondary ion mass spectroscopy (SIMS) depth profiles. These results indicate that excess Zn at the vicinity of the CIGS surface acts as non-radiative centers at the interface. The TRPL lifetime of the Zn1−xMgxO/CIGS film annealed at 250 °C reached values to be comparable to that of the as-deposited CdS/CIGS film. Performance of the Zn1−xMgxO/CIGS cells varied with the annealing temperature in the same manner as the TRPL lifetime. The highest efficiency of the Zn1−xMgxO/CIGS solar cells was achieved for annealing at 250 °C. The results of the TRPL lifetime on annealing show that the cell efficiency is strongly influenced by the Zn1−xMgxO/CIGS interface states related to the damages and diffusion of Zn.  相似文献   

18.
The idea of space solar power proposed by Glaser was explained as a set of a solar power power station in geostationary earth orbit to transmit microwave power and a ground station to receive the microwave power. Most of the ideas and concepts since Glaser used the same context. On the other hand, Collins et al. (Proceedings SPS '91, pp. 132–141, 1991) introduced the concept of microwave “fuel” to assess the commercial relations of power from space, in which space solar power stations are considered to sell microwave power to any unspecified rectenna. This concept changed the theoretical context of “power from space” to an industrial and economic relation of producers and buyers of an industrial product. This new context has been applied to the SPS 2000 conceptual study. As a result, if 2.45 GHz microwave power transmission is used, each rectenna can be planned and engineered independently from the space sector by local users, especially in developing countries, who are familiar with such activities as introducing solar energy systems.  相似文献   

19.
Zinc oxide (ZnO) is now often used as a transparent conductive oxide for contacts in thin-film silicon solar cells. This paper presents a study of ZnO material deposited by the low-pressure chemical vapour deposition technique, in a pressure range below the pressures usually applied for the deposition of this kind of material. A temperature series has been deposited, showing a morphological transition around 150 °C. ZnO samples deposited with temperatures just higher than this transition are constituted of large grains highly oriented along a single crystallographic orientation. These “monocrystals” lead to low resistivity values, showing a clear correlation between the size of the surface grains and the electrical performance of corresponding films. Additionally, these large grains also yield ZnO layers with high transparency and high light-scattering power, specially suitable for solar cell technology based on thin-film silicon.  相似文献   

20.
Buffer layers such as CdS and ZnS are used in high efficiency Cu(In,Ga)Se2 (CIGS) thin film solar cells. Eliminating buffer layer is attractive to realize low-cost thin film solar cells by reducing fabrication process. However, the elimination of the buffer layers leads to shunting due to the interface recombination between transparent conductive oxide (TCO) and CIGS layers. To reduce the interface recombination, the control of conduction band offset (CBO) is effective. In this study, we fabricated Zn1−xMgxO:Al (ZMO:Al) as the TCO for the CBO control. ZMO:Al was prepared by co-sputtering of ZnO:Al2O3 (ZnO:Al) and MgO:Al2O3 targets. ZMO:Al shows high transmittance in visible region and the band gap energy widen with the addition of Mg to ZnO:Al. Buffer-less CIGS solar cells with an Al/NiCr/TCO/CIGS/Mo/soda-lime glass structure using ZMO:Al and ZnO:Al were fabricated. For comparison, ZnO/CdS buffered cell was also fabricated. Current density-voltage characteristics of the devices showed the cell with ZMO:Al film achieved higher efficiency compared to the buffer-less cell with ZnO:Al. This result suggested that the control of CBO is important to reduce interface recombination between TCO layer and CIGS absorber.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号