首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
阳极催化剂是影响直接甲醇燃料电池(DMFC)性能及成本的主要因素之一,从催化剂载体选择、复合催化剂的制备、非贵金属催化剂研究三方面综述了DMFC阳极催化剂国内外研究现状,并进行了简要分析,展望了其应用前景。  相似文献   

3.
Carbon-supported platinum–iron catalysts were fabricated and characterised by means of scanning electron microscopy, energy-dispersive X-ray system and X-ray diffraction. The catalysts were tested in electrochemical half cells for oxygen reduction using voltammetry and steady-state polarisation measurements and in direct methanol fuel cells. Use of PtFe/C cathodes, instead of a Pt/C cathode, partially suppressed methanol oxidation and led to higher net oxygen reduction currents in the presence of methanol. Consequently, an increase in power density up to 30% was achieved in direct methanol fuel cells with PtFe/C cathodes, compared to that with Pt/C cathode. The influence of alloy composition and operation conditions on the cell performance has been investigated.  相似文献   

4.
The cell performance of direct methanol fuel cells (DMFC) is 0.5 V at 0.5 A cm–2 under high pressure oxygen operation (3 bar abs.) at 110 °C. However, high oxygen pressure operation at high temperatures is only useful in special market niches. Therefore, our work has now focused on air operation of a DMFC under low pressure (up to 1.5 bar abs.). At present, a power density of more than 100 mW cm–2 can be achieved at 0.5 V on air operation at 110 °C. These measurements were carried out in single cells with an electrode area of 3 cm2 and the air stoichiometry only amounted to 10. The effects of methanol concentration and temperature on the anode performance were studied by pseudo half cell measurements and the results are presented together with their impact on the cell voltage. A cell design with an electrode area of 550 cm2, which is appropriate for assembling a DMFC stack, was tested. A three-celled stack based on this design revealed nearly the same power densities as in the small experimental cells at low air excess pressure and the voltage–current curves for the three cells were almost identical. At 110 °C a power output of 165 W at a stack voltage of 1.5 V can be obtained in the air mode.  相似文献   

5.
直接甲醇燃料电池研究进展   总被引:10,自引:0,他引:10  
介绍了直接甲醇燃料电池的工作原理、研究现状及最新进展,认为直接甲醇燃料电池是目前较理想的燃料电池,有广阔的发展前景。  相似文献   

6.
Jun Zhu 《Electrochimica acta》2006,51(19):4052-4060
Acidic and neutral Nafion® 115 perfluorosulphonate membranes have been modified by in situ polymerization of pyrrole using Fe(III) and H2O2 as oxidizing agents, in order to decrease methanol crossover in direct methanol fuel cells. Improved selectivities for proton over methanol transport and improved fuel cell performances were only obtained with membranes that were modified while in the acid form. Use of Fe(III) as the oxidizing agent can produce a large decrease in methanol crossover, but causes polypyrrole deposition on the surface of the membrane. This increases the resistance of the membrane, and leads to poor fuel cell performances due to poor bonding with the electrodes. Surface polypyrrole deposition can be minimized, and surface polypyrrole can be removed, by using H2O2. The use of Nafion in its tetrabutylammonium form leads to very low methanol permeabilities, and appears to offer potential for manipulating the location of polypyrrole within the Nafion structure.  相似文献   

7.
碱性膜直接甲醇燃料电池因为结合了质子交换膜燃料电池和液体碱燃料电池的优点而产生自身独特的性质,使其可以在一定程度上弥补质子交换膜燃料电池以及液体碱燃料电池的缺点而尤其引人关注。其中碱性膜电解质为碱性膜燃料电池的核心组件,其性能直接关系到燃料电池的性能及寿命。截至目前,关于碱性膜材料的制备及应用方面的报道较多,涉及的碱性膜电解质的种类也较多。本文以燃料电池用碱性膜电解质为综述内容,对国内外关于碱性膜电解质的研究报道进行系统的梳理和介绍。  相似文献   

8.
Development of a direct methanol fuel cell (DMFC) mass flux model, using conventional transport theory, is presented and used to predict the fluid phase superficial velocity, methanol and water molar fluxes, and the chemical species (methanol and water) dimensionless concentration profiles in the polymer electrolyte membrane, Nafion® 117, of a DMFC. Implementation of these equations is illustrated to generate the numerical data as functions of the variables such as the pressure difference across the membrane, methanol concentration at the cell anode, temperature, and position in the membrane.  相似文献   

9.
叶丁丁  廖强  朱恂  丁玉栋  石泳  田鑫 《化工学报》2008,59(2):309-315
针对微型直接甲醇燃料电池,将阳极流场板简化为规则结构的多孔介质,运用多孔介质理论建立了包括流场板在内的阳极传输模型。模型考虑了阳极流道内液体饱和度沿流动方向的变化、催化层的厚度以及甲醇渗透,计算并讨论了阳极流道内液体饱和度的分布和流量对电池电流密度的影响,分析了阳极过电位对甲醇浓度分布和电池性能的影响以及质子交换膜内的传质特性。  相似文献   

10.
A comparative study of the use of supported and unsupported catalysts for direct methanol fuel cells has been performed. The effect of catalyst loading, fuel concentration and temperature dependence on the anode, cathode and full fuel cell performance was determined in a fuel cell equipped with a reversible hydrogen reference electrode. Although the measured specific activities of supported catalysts were as much as 3-fold greater than the unsupported catalysts, membrane electrode assemblies prepared with supported catalysts showed no improvement with loadings above 0.5 mg/cm2. Fuel cells utilizing 0.46 mg/cm2 supported catalyst electrodes performed as well as unsupported catalyst electrodes with 2 mg/cm2. The temperature dependence and methanol concentration dependence studies both suggest increased methanol permeation through the thinner supported catalyst layers relative to the unsupported catalyst layers.  相似文献   

11.
直接甲醇燃料电池参比电极的设计与稳定性   总被引:1,自引:1,他引:0       下载免费PDF全文
毛庆  孙公权  赵新生  杨少华  辛勤 《化工学报》2006,57(11):2699-2704
提出了用于原位测量直接甲醇燃料电池(DMFC)极化的参比电极的结构设计,并考察了电解质的润湿程度对参比电极的电位及其电位稳定性的影响.结果表明:在可逆氢电极(RHE)作为参比电极的DMFC中,RHE的电位随电解质润湿程度的增加而降低,其电位的稳定性主要取决于其表面状态的稳定性.提出要获得电位稳定及测量准确的极化曲线,RHE处的电解质应处于对侧液态水润湿的状态,且电极表面要有适量、稳定流速的氢气.  相似文献   

12.
This research aims to enhance the activity of Pt catalysts, thus to lower the loading of Pt metal in fuel cell. Highly dispersed platinum supported on single-walled carbon nanotubes (SWNTs) as catalyst was prepared by ion exchange method. The homemade Pt/SWNTs underwent a repetition of ion exchange and reduction process in order to achieve an increase of the metal loading. For comparison, the similar loading of Pt catalyst supported on carbon nanotubes was prepared by borohydride reduction method. The catalysts were characterized by using energy dispersive analysis of X-ray (EDAX), transmission electron micrograph (TEM), X-ray diffraction (XRD), and X-ray photoelectron spectrum (XPS). Compared with the Pt/SWNTs catalyst prepared by borohydride method, higher Pt utilization was achieved on the SWNTs by ion exchange method. Furthermore, in comparison to the E-TEK 20 wt.% Pt/C catalyst with the support of carbon black, the results from electrochemical measurement indicated that the Pt/SWNTs prepared by ion exchange method displayed a higher catalytic activity for methanol oxidation and higher Pt utilization, while no significant increasing in the catalytic activity of the Pt/SWNTs catalyst obtained by borohydride method.  相似文献   

13.
The dynamic operating behaviour of the direct methanol fuel cell (DMFC) is governed by several physico-chemical phenomena which occur simultaneously: double layer charging, electrode kinetics, mass transport inside the porous structures, reactant distributions in the anode and cathode flowbeds etc. Therefore it is essential to analyse the interactions of these phenomena in order to fully understand the DMFC. These phenomena were initially analysed independently by systematic experiments and model formulations. Electrode kinetics were determined by fitting models of varying complexity to electrochemical impedance spectroscopy (EIS) measurements. Reaction intermediates adsorbed on the catalyst seem to play a key role here. To describe mass transport across the DMFC a one-dimensional model was formulated applying the generalised Maxwell–Stefan equations for multi-component mass transport and a Flory–Huggins model for the activities of mobile species inside the membrane (PEM). Also swelling of the PEM as well as heat production and transport were considered. Finally, the anode flowbed was analysed by observing flow patterns in different flowbed designs and measuring residence time distributions (RTDs). Detailed CFD models as well as simpler CSTR network representations were used to compare to the experimental results. Even the simpler models showed good agreement with the experiments. After these investigations the results were combined: the electrode kinetics model was implemented in the mass transport model as well as in the CSTR network flowbed model. In both cases, good agreement, even to dynamic experiments, was obtained.  相似文献   

14.
The electrical response of the direct methanol fuel cell, based on solid polymer electrolyte, to variable load is reported. The dynamic power response of the direct methanol fuel cell is of importance particularly when the cell is used for transportation applications. The study reports the dynamic characteristics of a small-scale cell (active area 9 cm2), a large-scale cell (active area 272 cm2), and a three-cell stack. The effect of operating conditions (i.e., flow rate, cathode pressure and solution concentration) on the voltage response is described and the effect of a change of scale is discussed.  相似文献   

15.
汪茂海  郭航  马重芳 《化工学报》2005,56(7):1311-1316
直接甲醇燃料电池动态特性的研究对于实际应用来说非常重要.实验研究了直接甲醇单体燃料电池电流动态变化时电压的响应. 基于计算机控制的负载变化,得到了各种电流变化波形及不同的加载电流、放电/开路时间、加载斜率下的电池电压动态响应.结果表明电池电压对电流动态变换变化时的响应很迅速,动态运行时电池的开路电压要比稳态时的高,加载斜率对电池动态响应特性有重要影响. 电池内部电化学反应和传热传质瞬态变化的相互作用是电池动态响应的关键.  相似文献   

16.
Performance of a direct methanol fuel cell   总被引:12,自引:0,他引:12  
The performance of a direct methanol fuel cell based on a Nafion® solid polymer electrolyte membrane (SPE) is reported. The fuel cell utilizes a vaporized aqueous methanol fuel at a porous Pt–Ru–carbon catalyst anode. The effect of oxygen pressure, methanol/water vapour temperature and methanol concentration on the cell voltage and power output is described. A problem with the operation of the fuel cell with Nafion® proton conducting membranes is that of methanol crossover from the anode to the cathode through the polymer membrane. This causes a mixed potential at the cathode, can result in cathode flooding and represents a loss in fuel efficiency. To evaluate cell performance mathematical models are developed to predict the cell voltage, current density response of the fuel cell.  相似文献   

17.
直接甲醇燃料电池   总被引:1,自引:0,他引:1  
介绍了直接甲醇燃料电池的原理、结构,并与发展较早的氢气燃料电池进行优劣比较。针对近期商业化便携式燃料电池的技术指标,主要讨论了直接甲醇燃料电池在性能和成本上的现状和问题,并着重阐述了阳极催化剂和电解质膜(决定其性能的两个关键因素)的研发进展。  相似文献   

18.
A new approach to PEM fuel cell stack fabrication has been demonstrated. This approach is based on the use of light weight metal conductive elements together with nonconductive elements fabricated from engineering thermoplastics to yield a lightweight stack that can be manufactured from flat sheets of stock materials using inexpensive mass production techniques. The stack described here has a power output of over 520 W from a volume of 616 mL and a mass of 539 g for a power density of 967 W/kg and 846 W/L while operating at a pressure of 103 kPa with a 53% conversion efficiency. It is projected that with further refinement, PEM fuel cell stacks with power densities over 1,500 W/kg and 1,200 W/L can be produced.  相似文献   

19.
This research aims at increasing the utilization of platinum-ruthenium alloy (Pt-Ru) catalysts and thus lowering the catalyst loading in anodes for methanol electrooxidation. The direct methanol fuel cell’s (DMFC) anodic catalysts, Pt-Ru/C, were prepared by chemical reduction with a reducing agent added in two kinds of solutions under different circumstances. The reducing agent was added in hot solution with the protection of inert gases or just air, and in cold solution with inert gases. The catalysts were treated at different temperatures. Their performance was tested by cyclic voltammetry and potentiostatic polarization by utilizing their inherent powder microelectrode in 0.5 mol/L CH3OH and 0.5 mol/LH2SO4 solution. The structures and micro-surface images of the catalysts were determined and observed by X-ray diffraction and transmission electron microscopy, respectively. The catalyst prepared in inert gases showed a better catalytic performance for methanol electrooxidation than that prepared in air. It resulted in a more homogeneous distribution of the Pt-Ru alloy in carbon. Its size is small, only about 4.5 nm. The catalytic performance is affected by the order of the reducing agent added. The performance of the catalyst prepared by adding the reductant at constant temperature of the solution is better than that prepared by adding it in the solution at 0°C and then heating it up to the reducing temperature. The structure of the catalyst was modified, and there was an increase in the conversion of ruthenium into the alloyed state and an increase in particle size with the ascension of heat treatment temperature. In addition, the stability of the catalyst was improved after heat treatment. Translated from Journal of Harbin Institute of Technology, 2006, 38 (4): 541-545 [译自: 哈尔滨工业大学学报]  相似文献   

20.
A model for the liquid feed, direct methanol fuel cell (DMFC), based on the homogeneous two-phase flow theory and mass conservation equation, which describes the hydraulic behaviour of internally manifolded cell stacks, is presented. The model predicts the pressure drop behaviour of the anode side of an individual DMFC cell and is used to determine the channel depth and width for fast and efficient carbon dioxide removal with minimum pressure drop. The model is used to calculate flow distribution through fuel cell stack internal manifolds. The effect of inlet and outlet manifold diameters on flow distribution is also determined. Two types of manifold design are compared, reverse flow and parallel flow. An iterative numerical scheme is used to solve the differential equations for longitudinal momentum and continuity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号