首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A grey‐scale psychophysical experiment was carried out for evaluating colour differences using printed colour patches. In total, 446 pairs of printed samples were prepared surrounding 17 colour centers recommended by the CIE with an average δE of 3 units. Each pair was assessed 27 times by nine observers. The visual results were used to test some selected more advanced colour‐difference formulae and uniform colour spaces. The results showed that CIELAB and OSA performed the worst, and the advanced formulae and spaces gave quite satisfactory performance such as CIEDE2000, CIE94, DIN99d, CAM02‐UCS, and OSA‐GP‐Eu. The colour discrimination ellipses were used to compare with those of the earlier studies. The results showed that they agreed well with each other. © 2011 Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

2.
Most of the colour‐difference formulae were developed to fit data sets having a limited range of colour‐difference magnitudes. Hence, their performances are uncertain when applying them to a range of colour differences from very small to very large colour differences. This article describes an experiment including three parts according to the colour‐difference magnitudes: large colour difference (LCD), small colour difference (SCD), and threshold colour difference (TCD) corresponding to mean ΔE values of 50.3, 3.5, and 0.6, respectively. Three visual assessment techniques were used: ratio judgement, pair comparison, and threshold for LCD, SCD, and TCD experiments, respectively. Three data sets were used to test six colour‐difference formulae and uniform colour spaces (CIELAB, CIE94, CIEDE2000, CAM02‐SCD, CAM02‐UCS, and CAM02‐LCD). The results showed that all formulae predicted visual results with great accuracy except CIELAB. CIEDE2000 worked effectively for the full range of colour differences, i.e., it performed the best for the TCD and SCD data and reasonably well for the LCD data. The three CIECAM02 based colour spaces gave quite satisfactory performance. © Wiley Periodicals, Inc. Col Res Appl, 2012  相似文献   

3.
Varying magnitude of colour differences from threshold up to moderate size in painted sample pairs at five CIE colour centers was estimated by grey scale assessment. Painted samples were produced for constant step width along the main axes of previously determined threshold (x,y,Y)‐ellipsoids with lightness variation at constant (x,y)‐chromaticity starting with threshold length and enlarging it five times for moderate magnitude of colour difference. Pairs were formed for linear extensions along axes and for diagonal combinations at equal step width between axes. The model under test assumes additive linear scale extension in constant proportions of the threshold (x,y,Y)‐ellipsoid for increasing magnitude of perceived colour difference and correlates perceptual main colour characters with main ellipsoid axes. Both assumptions were falsified to some degree: in general, magnitude of colour difference varies differently, though close to linear, and slightly subadditive for the three axes and for the different colour centers; the short (x,y)‐ellipse axis in some cases is not correlated with a perceptual hue vector component, and the main lightness direction sometimes is tilted in relation to the (x,y)‐plane. Three colour‐difference formulae do not provide better global predictions than the local (x,y,Y)‐ellipsoid formulae. The results may be used for more detailed modeling of colour‐difference formulae and for tolerance settings at different ranges of colour difference. © 1999 John Wiley & Sons, Inc. Col Res Appl, 24, 78–92, 1999  相似文献   

4.
Visual evaluation experiments of color discrimination threshold and suprathreshold color‐difference comparison were carried out using CRT colors based on the psychophysical methods of interleaved staircase and constant stimuli, respectively. A large set of experimental data was generated ranged from threshold to large suprathreshold color difference at the five CIE color centers. The visual data were analyzed in detail for every observer at each visual scale to show the effect of color‐difference magnitude on the observer precision. The chromaticity ellipses from this study were compared with four previous published data, of CRT colors by Cui and Luo, and of surface colors by RIT‐DuPont, Cheung and Rigg, and Guan and Luo, to report the reproducibility of this kind of experiment using CRT colors and the variations between CRT and surface data, respectively. The present threshold data were also compared against the different suprathreshold data to show the effect of color‐difference scales. The visual results were further used to test the three advance color‐difference formulae, CMC, CIE94, and CIEDE2000, together with the basic CIELAB equation. In their original forms or with optimized KL values, the CIEDE2000 outperformed others, followed by CMC, and with the CIELAB and CIE94 the poorest for predicting the combined dataset of all color centers in the present study. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 198–208, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20106  相似文献   

5.
In this study, the crispening effect was clearly observed when 38 neutral‐coloured sample pairs with only lightness differences were assessed under 5 neutral backgrounds of different lightness values. The sample pairs are CRT‐based colours, and they are selected along the CIELAB L* axis from 0 to 100. The magnitude of colour difference of each pair is 5.0 CIELAB units. The visual assessment results showed that there is a very large crispening effect. The colour differences of the same pair assessed under different backgrounds could differ by a factor of up to 8 for a sample pair with low lightness. The perceived colour difference was enlarged when the lightness of a sample pair was similar to that of the background. The extent of crispening effect and its quantification are discussed in this investigation. The performances of five colour‐difference equations were also tested, including the newly developed CIEDE2000. © 2004 Wiley Periodicals, Inc. Col Res Appl, 29, 374–380, 2004; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20045  相似文献   

6.
This study investigates harmony in two‐colour combinations in order to develop a quantitative model. A total of 1431 colour pairs were used as stimuli in a psychophysical experiment for the visual assessment of harmony. These colour pairs were generated using 54 colours selected systematically from CIELAB colour space. During the experiment, observers were presented with colour pairs displayed individually against a medium gray background on a cathode ray tube monitor in a darkened room. Colour harmony was assessed for each colour pair using a 10‐category scale ranging from “extremely harmonious” to “extremely disharmonious.” The experimental results showed a general pattern of two‐colour harmony, from which a quantitative model was developed and principles for creating harmony were derived. This model was tested using an independent psychophysical data set and the results showed satisfactory performance for model prediction. The study also discusses critical issues including the definition of colour harmony, the relationship between harmony and pleasantness, and the relationship between harmony and order in colour. © 2006 Wiley Periodicals, Inc. Col Res Appl, 31, 191–204, 2006; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.20208  相似文献   

7.
Several colour‐difference formulas such as CMC, CIE94, and CIEDE2000 have been developed by modifying CIELAB. These formulas give much better fits for experimental data based on small colour differences than does CIELAB. None of these has an associated uniform colour space (UCS). The need for a UCS is demonstrated by the widespread use of the a*b* diagram despite the lack of uniformity. This article describes the development of formulas, with the same basic structure as the DIN99 formula, that predict the experimental data sets better than do the CMC and CIE94 colour‐difference formulas and only slightly worse than CIEDE2000 (which was optimized on the experimental data). However, these formulas all have an associated UCS. The spaces are similar in form to L*a*b*. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 282–290, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10066  相似文献   

8.
A new colour space, named ULAB, is developed. It is derived from the CIELAB colour space and can be converted to and from CIELAB. Unlike modified CIELAB colour‐difference formulae, ULAB incorporates corrections for lightness, chroma, and hue differences into its colour coordinates. For the small magnitude colour difference data, it shows the performance as good as more complicated formulae such as CIEDE2000. ULAB shows another chance of developing a colour space approximately more uniform than CIELAB. © 2013 Wiley Periodicals, Inc. Col Res Appl, 40, 17–29, 2015  相似文献   

9.
A new colour model, named LLAB(l:c) is derived. It includes two parts: the BFD chromatic adaptation transform derived by Lam and Rigg, and a modified CIELAB uniform colour space. The model's performance was compared with the other spaces and models using the LUTCHI Colour Appearance Data Set. The results show that LLAB(l:c) model is capable of precisely quantifying the change of colour appearance under a wide range of viewing parameters such as light sources, surrounds/media, achromatic backgrounds, sizes of stimuli, and luminance levels. It had a similar performance as that of the Hunt colour appearance model. The LLAB(l:c) model was also tested using various colour difference datasets. The model gave a similar performance as the state-of-the-art colour difference formulae such as CMC, CIE94, and BFD. This performance is considered to be very satisfactory, and the model, therefore, should be considered for field trials in applications such as colour specification, colour difference evaluation, cross-image reproduction, gamut mapping, prediction of metamerism and colour constancy, and quantification of colour-rendering properties. The model does not give predictions for chroma (as distinct from colourfulness), or for brightness, and it does not include any rod response. © 1996 John Wiley & Sons, Inc.  相似文献   

10.
In an earlier article the authors related visually‐ scaled large colour differences to ΔE* values calculated using four colour‐difference formulae. All four metrics yielded linear regressions from plots of visual colour difference against ΔE*, and ΔE gave the best linear fit, but the correlations were rather low. In an effort to clarify matters, the previous investigation is expanded to include data not hitherto examined. The link between visual colour difference and ΔE* colour metrics is further explored in terms of a power law relationship over a wide range of lightness, hue, and chroma variations within CIELAB colour space. It is shown that power‐law fits are superior to linear regressions in all cases, although correlations over large regions of the colour space are not very high. Partitioning of the experimental results to give reduced data sets in smaller regions is shown to improve correlations markedly, using power‐law fits. Conclusions are drawn concerning the uniformity of CIELAB space in the context of both linear and power‐law behavior. © 2000 John Wiley & Sons, Inc. Col Res Appl, 25, 116–122, 2000  相似文献   

11.
Psychophysical experiments of color discrimination threshold and suprathreshold color‐difference comparison were carried out with CRT‐generated stimuli using the interleaved staircase and constant stimuli methods, respectively. The experimental results ranged from small (including threshold) to large color difference at the five CIE color centers, which were satisfactorily described by chromaticity ellipses as equal color‐difference contours in the CIELAB space. The comparisons of visual and colorimetric scales in CIELAB unit and threshold unit indicated that the colorimetric magnitudes typically were linear with the visual ones, though with different proportions in individual directions or color centers. In addition, color difference was generally underestimated by the Euclidean distance in the CIELAB space, whereas colorimetric magnitude was perceptually underestimated for threshold unit, implying the present color system is not a really linear uniform space. Furthermore, visual data were used to test the CIELAB‐based color‐difference formulas. In their original forms CIEDE2000 performed a little better than CMC, followed by CIELAB, and with CIE94 showing the worst performance for the combined data set under the viewing condition in this study. © 2002 Wiley Periodicals, Inc. Col Res Appl, 27, 349–359, 2002; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10081  相似文献   

12.
The formulation of a metric to provide numbers that correlate with visually perceived colour differences has proved a very difficult task. Most early experimental work was concerned with just-perceptible colour differences. Later the concept of perceptibility was expanded to acceptability, it being argued that many industrial tolerances were larger than just-perceptible. This led naturally to the concept of large colour differences and the question as to whether the current CIE colour-difference formulae, specified as appropriate for just-perceptible differences, can be applied to larger differences than those concerned with, for instance, colour matches experienced in the fabric dyeing industry. This article investigates the application of four colour-difference formulae to visual scaling of large colour differences between photographically prepared reflection colour samples at approximately constant lightness. It is shown that the scaling of colour differences depends on the directions of hue and chroma differences of a test sample when compared with a reference. It is also shown that, of the four candidate colour-difference metrics, the modified CIE 1976 L*a*b* colour difference, referred to as CIE1994 or , correlates best with visual scaling. © 1997 John Wiley & Sons, Inc. Col Res Appl, 22, 298–307, 1997  相似文献   

13.
Perceived colour differences of 17 test colour samples (uniform standalone patches) were evaluated visually between a test and a reference light source on three visual scales. Two graphical rating scales (a greyscale‐anchored colour difference scale and a similarity judgement scale) and a five‐step ordinal rating scale (excellent, good, acceptable, not acceptable or very bad colour rendering) were used. The experimental setup included tungsten halogen, gas discharge, fluorescent, and white LED light sources at two correlated colour temperatures, 2700 and 4500 K. There was an inverse relationship between similarity judgement and visual colour difference results. Each category of the five‐step ordinal rating scale had a characteristic mean visual colour difference value. Visual colour differences correlated best with the recently developed CIECAM02‐UCS colour difference metric. Latter metric was used to predict the observers' ratings of visual colour differences on the above five‐step ordinal rating scale. From the predicted ratings of 17 test‐colour samples under the test light source, a new ordinal rating scale based colour rendering index (RCRI) was defined and compared with previous colour rendering indices. RCRI correlated well with both the mean visual colour differences and the mean similarity judgements. Despite the significant interobserver differences of the visual assessment of colour differences, the RCRI method showed an overall performance of 73% in terms of good predictions of the rating categories. Validation experiments with complex still life (tabletop) stimuli are currently underway. © 2010 Wiley Periodicals, Inc. Col Res Appl, 2010  相似文献   

14.
The texture effect on visual colour difference evaluation was investigated in this study. Five colour centers were selected and textured colour pairs were generated using scanned textile woven fabrics and colour‐mapping technique. The textured and solid colour pairs were then displayed on a characterized cathode ray tube (CRT) monitor for colour difference evaluation. The colour difference values for the pairs with texture patterns are equal to 5.0 CIELAB units in lightness direction. The texture level was represented by the half‐width of histogram, which is called texture strength in this study. High correlation was found between texture strength and visual colour difference for textured colour pairs, which indicates that an increasing of 10 units of texture strength in luminance would cause a decreasing of 0.25 units visual difference for the five colour centers. The ratio of visual difference between textured and solid colour pairs also indicates a high parametric effect of texture. © 2005 Wiley Periodicals, Inc. Col Res Appl, 30, 341–347, 2005; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.  相似文献   

15.
对比了CIE2000公式和CIELab公式,并通过实验比较了这两种色差公式对不同色域范围的颜色评定差别,籍此来优化目前涂料行业广泛使用的CIELab色差公式评定标准。  相似文献   

16.
Recent work in color difference has led to the recommendation of CIEDE2000 for use as an industrial color difference equation. While CIEDE2000 was designed for predicting the visual difference for large isolated patches, it is often desired to determine the perceived difference of color images. The CIE TC8‐02 has been formed to examine these differences. This paper presents an overview of spatial filtering combined with CIEDE2000, to assist TC8‐02 in the evaluation and implementation of an image color difference metric. Based on the S‐CIELAB spatial extension, the objective is to provide a single reference for researchers desiring to utilize this technique. A general overview of how S‐CIELAB functions, as well as a comparison between spatial domain and frequency domain filtering is provided. A reference comparison between three CIE recommended color difference formulae is also provided. © 2003 Wiley Periodicals, Inc. Col Res Appl, 28, 425–435, 2003; Published online in Wiley InterScience (www.interscience.wiley.com). DOI 10.1002/col.10195  相似文献   

17.
In this study, two psychophysical experiments, colour‐difference assessment and colour‐appearance estimation, were conducted to investigate the perceived quality of four CIE illuminant simulators, including two simulators based on LED light sources. The perceived colour‐differences of 30 metameric pairs, seen under the different simulators, were evaluated by 10 colour‐normal observers using the gray scale method and the colour appearance of the colour inconstant sample in each pair assessed in a magnitude estimation method. Colorimetric measures revealed that LED simulators can achieve the desired quality according to the relevant ISO and CIE standards. The results of the experiments showed that an LED simulator outperformed the conventional fluorescent lamp‐based simulator for the CIE illuminant D50 condition. In addition, an LED simulator worked almost equally well as a conventional simulator for simulating CIE illuminant A. These findings strongly indicated the good quality of LED simulators based on a limited number of channels, and the superiority of LED technology. © 2016 Wiley Periodicals, Inc. Col Res Appl, 42, 408–418, 2017  相似文献   

18.
This work is concerned with the prediction of visual colour difference between pairs of palettes. In this study, the palettes contained five colours arranged in a horizontal row. A total of 95 pairs of palettes were rated for visual difference by 20 participants. The colour difference between the palettes was predicted using two algorithms, each based on one of six colour-difference formulae. The best performance (r2 = 0.86 and STRESS = 16.9) was obtained using the minimum colour-difference algorithm (MICDM) using the CIEDE2000 equation with a lightness weighing of 2. There was some evidence that the order (or arrangement) of the colours in the palettes was a factor affecting the visual colour differences although the MICDM algorithm does not take order into account. Application of this algorithm is intended for digital design workflows where colour palettes are generated automatically using machine learning and for comparing palettes obtained from psychophysical studies to explore, for example, the effect of culture, age, or gender on colour associations.  相似文献   

19.
The Crispening effect is defined as an increase in the perceived color difference of the two stimuli, when their color (chromaticity or luminance) is close to the background on which the two stimuli are compared. In this study, the amount of the Crispening effect for three achromatic backgrounds and also the performance of six different color difference formulas (CDFs) for prediction of this effect have been investigated, by preparing 85 sample pairs in 9 CIE's recommended color centers. Regarding the results, the maximum (50%) and the minimum (4%) amount of the Crispening effect belong to the gray and the purple centers, respectively. According to the results of a comparative test, the Crispening intensifies when two stimuli have just lightness difference instead of just chromaticity difference. The highest variation was for the gray samples, in which the amount of the Crispening effect increased from 35% to 65%. By using PF/3 and STRESS index, it is also concluded that CMC and CIEDE2000 perform better than CAM02‐SCD and CAM02‐UCS in prediction of the Crispening effect on the dark gray and gray backgrounds. According to the results, the significant differences between the performances of the CDFs disappear when the luminance of the background increases. Huang's power functions also do not improve these results significantly. Furthermore, the results indicate that the traditional L* equation used in CIELAB performs similar to the Whittle's formula in prediction of the Crispening effect for reflective samples, and no significant difference was obtained.  相似文献   

20.
This study aimed to investigate the differences in colour naming between the English (British) and Mandarin (Taiwanese) languages. A constrained method was employed, with 20 British and 20 Chinese adults. All the experiments were conducted under an artificial daylight, using 1526 colours from the Natural Color System (NCS). Each subject was asked to find the colour(s) corresponding to basic names, modifiers, and secondary names in terms of one colour (focal colour) or a colour region (colour volume). Little difference in chromaticness and hue was found between the two languages, but a systematic discrepancy was found in blackness. Because this could have been caused by different surrounds, i.e., gray and white walls used for the British and Chinese experiments, respectively, a verification experiment was carried out using a panel of ten Taiwanese subjects against a gray surround. The results proved that the lightness difference found earlier was indeed caused by the surround. © 2001 John Wiley & Sons, Inc. Col Res Appl, 26, 193–208, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号