首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为有效处理印染废水,选用活性炭纤维ACF为吸附剂,以盐酸为改性试剂,以亚甲基蓝为目标污染物,通过正交实验设计确定了ACF的最佳改性条件,并与未改性ACF进行了吸附性能的比较。实验结果表明,当盐酸浓度为3 mol·L-1,真空浸渍时间为90 min,真空浸渍次数为4次,并于100℃烘干所制得的改性活性炭纤维ACF具有最高的吸附性能,快速吸附10 min,对亚甲基蓝的吸附效率已达到91.90%,远高于未经改性处理的ACF对亚甲基蓝的吸附效率43.44%;吸附30 min后达到吸附平衡,吸附率可达99.8%以上。  相似文献   

2.
采用浓硫酸改性活性炭作吸附剂,研究其对模拟废水中苯酚的吸附性能。结果表明:在35℃,含酚废水初始浓度0.8 g/L,改性活性炭用量1.0 g,吸附时间20 min的条件下,改性活性炭对水中苯酚的去除率达到96.2%,相对于未改性的活性炭,其吸附效果有了较大的提高,且该吸附剂重复使用5次后的去除率仍达70.0%。实验证明,浓硫酸改性的活性炭可作为优良的吸附剂处理废水中的苯酚。  相似文献   

3.
以木炭、活性炭、柚子皮为原料,分别通过研磨、负载Fe/Al/Na的改性处理制备了改性吸附剂,并使用该吸附剂对焦化废水进行静态吸附处理。实验结果表明,负载Fe/Al/Na于3种不同的吸附材料上,FeCl3改性活性炭对焦化废水中有机物的吸附效果最好,其对COD的吸附率高达73.98%。然后,进一步探讨了用FeCl3改性活性炭处理焦化废水中有机物的最佳吸附剂质量浓度以及最佳吸附时间。在吸附剂质量浓度为8g/L、吸附时间为3h的条件下,FeCl3改性后的活性炭对废水中有机物的吸附率高达90.24%、吸附量92.50mg/g。  相似文献   

4.
研究了活性炭微波改性前后对高盐废水中有机物的去除效果。通过单因素试验,研究改性前后活性炭质量浓度、p H、吸附时间对高盐废水TOC的去除规律,结果表明,活性炭最佳质量浓度为5 g/L,平衡吸附时间为180 min,在酸性条件下吸附效果最佳,且中性条件下改性效果最好。吸附分级试验表明,活性炭主要吸附憎水性有机物,且改性后对各类有机物的去除效果均有提升。动力学研究结果表明,改性前后吸附过程均能很好的拟合准二级动力学模型,改性后平衡吸附量提高20.82%。  相似文献   

5.
以粉煤灰为原料,探索用硫酸改性粉煤灰负载壳聚糖的最佳工艺条件及其处理印染废水的效果。改性的最佳工艺条件为:硫酸浓度为5mol/L、酸浸时间120min、固液比为20g粉煤灰/100mLH2SO4。负载的最佳条件为每10g粉煤灰负载0.4g壳聚糖。用其吸附处理印染废水的最佳条件为吸附剂用量为0.01g/mL、吸附时间为40min、吸附温度为30℃、pH=5、振荡速率为200r/min,此时最大脱色率为58.5%。实现了对粉煤灰的资源化利用,消除了粉煤灰对环境的危害,可作为印染废水的预处理,以减少后续处理的负荷。  相似文献   

6.
活性炭的改性及其对苯酚吸附行为的研究   总被引:1,自引:0,他引:1  
通过正交试验的方法,优化活性炭的改性条件;并以活性炭为载体,氢氧化钠溶液为改性剂,在最优条件下制备改性活性炭;测定了改性前后活性炭的比表面积及表面酸性官能团的含量;考察了改性前后活性炭对苯酚的吸附行为。结果表明,在NaOH溶液浓度为0.1mol/l,浸渍时间为3h,活化时间为3h,活化温度为400℃的情况下,改性活性炭吸附效果最佳,苯酚吸附量为149.05mg/g,比未改性活性炭的吸附量提高了61.97%;NaOH-改性活性炭的比表面积为1046.10m2/g,比未改性活性炭的比表面积增加了12.42%,改性后表面的酸性基团含量降低,碱性增强;Freundlich和Langmuir二种等温线模型均能较好的反应活性炭对苯酚的吸附行为,其中Freundlich模型更为理想。  相似文献   

7.
以价廉易得的商业炭为原料,采用氢氧化钾为活化剂,制备出改性微孔活性炭。对其进行了表征分析,并将其用于吸附印染废水中的亚甲基蓝(MB)。结果表明,经活化改性后的活性炭孔径分布均匀,平均孔径为1.2 nm,比表面积高达2 380 m~2/g(比商业炭提高了58.7%)。改性活性炭对MB的吸附过程符合Redlich-Peterson等温吸附模型,其吸附机理符合Langmuir模型的可能性较大,吸附动力学特征符合准2级动力学方程,吸附速率主要受颗粒内活性位点吸附步骤控制。改性活性炭在在室温下对MB的最大吸附量可达305.0 mg/g。吸附过程是自发进行的,温度的升高有利于吸附过程的进行与吸附量的提高。  相似文献   

8.
李晓颖 《辽宁化工》2013,42(2):112-114
主要对改性粉煤灰处理印染废水进行了研究。通过实验考察了吸附时间、吸附温度、改性粉煤灰加入、改性粉煤灰粒度和废水的pH对废水中色度去除率的影响。实验结果表明,改性粉煤灰处理印染废水的其最佳工艺条件为:吸附时间为70min、吸附温度为30℃、改性粉煤灰加入量为2.4g、改性粉煤灰粒度为100~120目、废水pH为10.0。在此条件下可使100 mL模拟印染废水中色度由600倍降到65倍,色度去除率达89.2%,达到了国家《污水综合排放标准》二级标准。  相似文献   

9.
张颖 《粘接》2023,(8):126-129
利用分光光度法研究改性活性炭对盐酸四环素的吸附性能。结果表明:随吸附时间变化,在0~15 min吸附量快速上升,15 min后吸附量增速逐渐放缓。体系温度和吸附剂质量浓度的变化,会明显影响吸附量和吸附率。25℃时,吸附剂质量浓度达到170 mg/L,吸附率变化接近不变,为较优吸附方案。利用最优吸附条件,改性活性炭的吸附量与未改性活性炭相比提高了19%,其吸附率提高24%。吸附动力学研究表明,其对盐酸四环素的吸附更符合准二级动力学过程。改性活性炭对盐酸四环素的吸附性能相比改性前有明显改善,改性活性炭在净化环境水源中四环素具有潜在的应用价值。  相似文献   

10.
以废棉纺织物为研究对象,对其进行改性处理,分析原样和改性样的元素组成和表面形态,确定出废棉纺织物制备生物炭材料的方法,研究生物炭材料对亚甲基蓝印染废水的吸附特性。实验表明,棉纺织废物经改性后,表面形态呈现粗糙且疏松的结构;改性样生物炭的pH值为9.51时,生物炭中碳质量分数为67.5%,生物炭得率为43.2%,生物炭碘吸附值为2 493 mg/g,生物炭材料表面官能团非常丰富,具有吸附能力;当亚甲基蓝印染废水初始质量浓度为300、400 mg/L时,平衡吸附量为112.1、119.4 mg/g,吸附过程是快速吸附,吸附量大,有较好的吸附作用。废棉纺织物改性后可以促进生物炭孔结构的形成,具有吸附能力,为废纺织物的资源化利用、吸附剂的制备和印染废水的处理提供了一种新方法。  相似文献   

11.
《广东化工》2021,48(6)
采用酸碱、MgCl_2/FeCl_3混合溶液两种方法对椰壳生物炭进行改性,设置不同盐度、温度、pH、腐殖酸、反应时间等理化条件,研究改性椰壳生物炭吸附苯酚的效应,并进行吸附动力学研究。结果表明,两种改性椰壳生物炭对水体中苯酚的吸附效果均比未改性好,吸附速率更快。盐度和温度升高均可促进生物炭对水体中苯酚的吸附;pH在2~11范围内变化,生物炭对苯酚的吸附量先增后降;腐殖酸对吸附影响不大。改性生物炭吸附苯酚废水的最佳理化条件为:盐度5%,温度30℃,pH为酸性或中性。吸附动力学分析结果表明伪二级动力学模型能更好拟合改性椰壳生物炭对苯酚的吸附。  相似文献   

12.
通过对花生壳改性处理模拟含铅废水,增强对铅离子的吸附能力,结果表明,最佳改性方法是花生壳在0.015 mol/L高锰酸钾中搅拌改性4 h。改性前后花生壳的IR图谱发现吸附位点种类没有增加,但是数量明显增加;BET比表面积测试结果表明,改性后花生壳的比表面积增加了78%。在初始条件为50 m L含Pb2+100 mg/L模拟含铅废水时,最佳的吸附条件为0.2 g改性花生壳在含铅废水中吸附2 h,Pb2+除去率为99.48%,较未改性的花生壳提高了42.63%。吸附机理研究表明,采用Lagergren准二级动力学模型和Langmuir等温吸附模型可以准确描述吸附行为,拟合实验数据平衡吸附量为24.93 mg/g,与实验结果一致。  相似文献   

13.
通过对花生壳改性处理模拟含铅废水,增强对铅离子的吸附能力,结果表明,最佳改性方法是花生壳在0.015 mol/L高锰酸钾中搅拌改性4 h。改性前后花生壳的IR图谱发现吸附位点种类没有增加,但是数量明显增加;BET比表面积测试结果表明,改性后花生壳的比表面积增加了78%。在初始条件为50 m L含Pb2+100 mg/L模拟含铅废水时,最佳的吸附条件为0.2 g改性花生壳在含铅废水中吸附2 h,Pb2+除去率为99.48%,较未改性的花生壳提高了42.63%。吸附机理研究表明,采用Lagergren准二级动力学模型和Langmuir等温吸附模型可以准确描述吸附行为,拟合实验数据平衡吸附量为24.93 mg/g,与实验结果一致。  相似文献   

14.
分别采用高温、超声波、化学试剂、掺杂壳聚糖方法对活性炭进行了改性处理,并将其用于含酚废水的处理。结果表明:四种改性处理方法的效果依次为掺杂壳聚糖改性>化学试剂改性>高温改性>超声波改性;当壳聚糖与活性炭的掺杂比例为1∶6时,最大吸附量达到67.1 mg/g,与未改性前的最大吸附量相比提高了116.2%。  相似文献   

15.
高锰酸钾改性活性炭的表征及吸附Cr(Ⅵ)性能的研究   总被引:1,自引:0,他引:1  
用KMnO_4改性活性炭对重金属离子Cr(Ⅵ)进行吸附。采用扫描电子显微镜(SEM)、傅里叶变换红外光谱仪(FT-IR)、N2吸附/解吸等方法对改性活性炭的理化性质进行表征,探讨各种参数(如pH、接触时间、吸附剂用量、温度和初始浓度)对吸附Cr(Ⅵ)的影响。研究证明,当pH 2时,KMnO_4改性活性炭对重金属离子Cr(Ⅵ)的吸附效果最佳,AC1和AC3吸附率分别达到65%和90%以上,而未改性AC0的吸附率约40%。随着pH的增加,吸附效果变弱。接触时间为4 h时,KMnO_4改性活性炭对重金属离子Cr(Ⅵ)的吸附基本达到平衡,而温度对其影响不大。当改性炭的投加量为50 mg、Cr(Ⅵ)溶液浓度为10 mg/L时,吸附效果最佳,AC3的吸附率可达90%以上,比AC0增加50%以上。改性活性炭吸附Cr(Ⅵ)过程符合准二级动力学方程。  相似文献   

16.
文章主要研究了改性活性炭的吸附性能在降低废水COD方面的作用。通过改变水样中的改性活性炭投加量、反应的温度和反应试液的p H,确定了最适宜改性活性炭吸附的条件,吸附后的改性活性炭经过热再生,可以循环使用3次。同时与未改性活性炭相比,改性活性炭具在吸附性能具有较大的优势。  相似文献   

17.
为提高活性炭对Pb~(2+)的吸附效果,用硝酸铁对活性炭进行了改性处理。采用BET、SEM、Boehm等方法对改性前后活性炭的理化特性进行了表征,考察了吸附时间、p H、吸附剂投加量对改性前后活性炭吸附Pb~(2+)效果的影响。结果表明,相比于未改性活性炭(GAC),硝酸铁改性活性炭(Fe-GAC)比表面积减少,酸性含氧官能团增加,极性增强。对于质量浓度为10 mg/L的Pb~(2+)溶液,Fe-GAC的最佳投加量为2.0 g/L,此条件下Pb~(2+)去除率可达到98.73%,比采用GAC提高了30.15%。吸附剂吸附Pb~(2+)过程与Langmuir吸附等温线方程拟合较好,相关系数R2在0.99以上。  相似文献   

18.
通过比较不同改性剂改性的粉煤灰对印染废水的处理效果,验证了Ca(OHh改性粉煤灰的优越性,并对影响废水处理效果的主要操作条件进行了试验研究,确定了最佳反应条件。研究表明,改性粉煤灰的投加量、pH、吸附时间等对废水的处理效果影响很大。投加量为20g/L、pH=8、吸附时间为30min为最佳操作条件,脱色率、CODcr、SS去除率分别达到98.2%,80.9%,72.3%。改性粉煤灰不但能有效处理印染废水,并且处理后的粉煤灰可以用来制砖或水泥。  相似文献   

19.
制备了不同化学试剂改性的苹果树枝木炭,研究了其对焦化废水中氨氮及色度的吸附。研究结果表明,对于未改性木炭,在温度30℃,投加量6g/L,吸附5h时,氨氮和色度去除效率分别为56.30%和98.18%,氨氮吸附量为19.46mg/g;对于NaCl和ZnCl2改性木炭,同样条件下对氨氮的最大去除率分别为67.58%和66.29%,其吸附量分别为23.36mg/g和22.91mg/g,比未改性木炭提高了20.04%和17.74%,而脱色率降为75.11%和71.87%。另外,温度的提升有利于木炭对氨氮的吸附。因此,废弃苹果树枝制备的木炭吸附剂在焦化废水氨氮和色度脱除方面有一定的应用价值。  相似文献   

20.
为了提高壳聚糖处理印染废水效果,用戊二醛对其进行交联改性,并探究了交联改性后的壳聚糖与活性炭联用处理印染废水时交联壳聚糖和活性炭质量比、复合絮凝剂投加量、絮凝时间、絮凝温度、pH等因素对印染废水处理效果的影响,结果表明,当交联壳聚糖和活性炭质量比1∶7、复合絮凝剂投加量5 g、絮凝时间2 h、絮凝温度40℃、pH=3.5时印染废水处理效果最好,脱色率和COD去除率分别达98.03%和87.16%,达到了理想的印染废水处理效果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号